亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The value of text classification's future research has encountered challenges and uncertainties, due to the extraordinary efficacy demonstrated by large language models (LLMs) across numerous downstream NLP tasks. In this era of open-ended language modeling, where task boundaries are gradually fading, an urgent question emerges: have we made significant advances in text classification under the full benefit of LLMs? To answer this question, we propose RGPT, an adaptive boosting framework tailored to produce a specialized text classification LLM by recurrently ensembling a pool of strong base learners. The base learners are constructed by adaptively adjusting the distribution of training samples and iteratively fine-tuning LLMs with them. Such base learners are then ensembled to be a specialized text classification LLM, by recurrently incorporating the historical predictions from the previous learners. Through a comprehensive empirical comparison, we show that RGPT significantly outperforms 8 SOTA PLMs and 7 SOTA LLMs on four benchmarks by 1.36% on average. Further evaluation experiments show a clear surpassing of RGPT over human classification.

相關內容

文本分類(Text Classification)任務是根據給定文檔的內容或主題,自動分配預先定義的類別標簽。

The integration of an ensemble of deep learning models has been extensively explored to enhance defense against adversarial attacks. The diversity among sub-models increases the attack cost required to deceive the majority of the ensemble, thereby improving the adversarial robustness. While existing approaches mainly center on increasing diversity in feature representations or dispersion of first-order gradients with respect to input, the limited correlation between these diversity metrics and adversarial robustness constrains the performance of ensemble adversarial defense. In this work, we aim to enhance ensemble diversity by reducing attack transferability. We identify second-order gradients, which depict the loss curvature, as a key factor in adversarial robustness. Computing the Hessian matrix involved in second-order gradients is computationally expensive. To address this, we approximate the Hessian-vector product using differential approximation. Given that low curvature provides better robustness, our ensemble model was designed to consider the influence of curvature among different sub-models. We introduce a novel regularizer to train multiple more-diverse low-curvature network models. Extensive experiments across various datasets demonstrate that our ensemble model exhibits superior robustness against a range of attacks, underscoring the effectiveness of our approach.

Successive interference cancellation (SIC) is used to approach the achievable information rates (AIRs) of joint detection and decoding for long-haul optical fiber links. The AIRs of memoryless ring constellations are compared to those of circularly symmetric complex Gaussian modulation for surrogate channel models with correlated phase noise. Simulations are performed for 1000 km of standard single-mode fiber with ideal Raman amplification. In this setup, 32 rings and 16 SIC-stages with Gaussian message-passing receivers achieve the AIR peaks of previous work. The computational complexity scales in proportion to the number of SIC-stages, where one stage has the complexity of separate detection and decoding.

Target class classification is a mixed classification and transition model whose integrated goal is to assign objects to a certain, so called target or normal class. The classification process is iterative, and in each step an object in a certain class undergoes an action attached to that class, initiating the transition of the object to one of the classes. The sequence of transitions, which we call class transitions, must be designed to provide the final assignment of objects to the target class. The transition process can be described in the form of a directed graph, and the success of the final classification is mainly due to the properties of this graph. In our previous research we showed that the desirable structure of the transition graph is an oriented rooted tree with orientation towards the root vertex, which corresponds to the normal class. It is clear that the transition graph of an arbitrary algorithm (policy) may not have this property. In this paper we study the structure of realistic transition graphs, which makes it possible to find classification inconsistencies, helping to transfer it into the desired form. The medical interpretation of dynamic treatment regime considered in the article further clarifies the investigated framework.

Previous stance detection studies typically concentrate on evaluating stances within individual instances, thereby exhibiting limitations in effectively modeling multi-party discussions concerning the same specific topic, as naturally transpire in authentic social media interactions. This constraint arises primarily due to the scarcity of datasets that authentically replicate real social media contexts, hindering the research progress of conversational stance detection. In this paper, we introduce a new multi-turn conversation stance detection dataset (called \textbf{MT-CSD}), which encompasses multiple targets for conversational stance detection. To derive stances from this challenging dataset, we propose a global-local attention network (\textbf{GLAN}) to address both long and short-range dependencies inherent in conversational data. Notably, even state-of-the-art stance detection methods, exemplified by GLAN, exhibit an accuracy of only 50.47\%, highlighting the persistent challenges in conversational stance detection. Furthermore, our MT-CSD dataset serves as a valuable resource to catalyze advancements in cross-domain stance detection, where a classifier is adapted from a different yet related target. We believe that MT-CSD will contribute to advancing real-world applications of stance detection research. Our source code, data, and models are available at \url{//github.com/nfq729/MT-CSD}.

Recent studies have demonstrated the emerging capabilities of foundation models like ChatGPT in several fields, including affective computing. However, accessing these emerging capabilities is facilitated through prompt engineering. Despite the existence of some prompting techniques, the field is still rapidly evolving and many prompting ideas still require investigation. In this work, we introduce a method to evaluate and investigate the sensitivity of the performance of foundation models based on different prompts or generation parameters. We perform our evaluation on ChatGPT within the scope of affective computing on three major problems, namely sentiment analysis, toxicity detection, and sarcasm detection. First, we carry out a sensitivity analysis on pivotal parameters in auto-regressive text generation, specifically the temperature parameter $T$ and the top-$p$ parameter in Nucleus sampling, dictating how conservative or creative the model should be during generation. Furthermore, we explore the efficacy of several prompting ideas, where we explore how giving different incentives or structures affect the performance. Our evaluation takes into consideration performance measures on the affective computing tasks, and the effectiveness of the model to follow the stated instructions, hence generating easy-to-parse responses to be smoothly used in downstream applications.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司