亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The integration of an ensemble of deep learning models has been extensively explored to enhance defense against adversarial attacks. The diversity among sub-models increases the attack cost required to deceive the majority of the ensemble, thereby improving the adversarial robustness. While existing approaches mainly center on increasing diversity in feature representations or dispersion of first-order gradients with respect to input, the limited correlation between these diversity metrics and adversarial robustness constrains the performance of ensemble adversarial defense. In this work, we aim to enhance ensemble diversity by reducing attack transferability. We identify second-order gradients, which depict the loss curvature, as a key factor in adversarial robustness. Computing the Hessian matrix involved in second-order gradients is computationally expensive. To address this, we approximate the Hessian-vector product using differential approximation. Given that low curvature provides better robustness, our ensemble model was designed to consider the influence of curvature among different sub-models. We introduce a novel regularizer to train multiple more-diverse low-curvature network models. Extensive experiments across various datasets demonstrate that our ensemble model exhibits superior robustness against a range of attacks, underscoring the effectiveness of our approach.

相關內容

Instructing the model to generate a sequence of intermediate steps, a.k.a., a chain of thought (CoT), is a highly effective method to improve the accuracy of large language models (LLMs) on arithmetics and symbolic reasoning tasks. However, the mechanism behind CoT remains unclear. This work provides a theoretical understanding of the power of CoT for decoder-only transformers through the lens of expressiveness. Conceptually, CoT empowers the model with the ability to perform inherently serial computation, which is otherwise lacking in transformers, especially when depth is low. Given input length $n$, previous works have shown that constant-depth transformers with finite precision $\mathsf{poly}(n)$ embedding size can only solve problems in $\mathsf{TC}^0$ without CoT. We first show an even tighter expressiveness upper bound for constant-depth transformers with constant-bit precision, which can only solve problems in $\mathsf{AC}^0$, a proper subset of $ \mathsf{TC}^0$. However, with $T$ steps of CoT, constant-depth transformers using constant-bit precision and $O(\log n)$ embedding size can solve any problem solvable by boolean circuits of size $T$. Empirically, enabling CoT dramatically improves the accuracy for tasks that are hard for parallel computation, including the composition of permutation groups, iterated squaring, and circuit value problems, especially for low-depth transformers.

Deep neural classifiers tend to rely on spurious correlations between spurious attributes of inputs and targets to make predictions, which could jeopardize their generalization capability. Training classifiers robust to spurious correlations typically relies on annotations of spurious correlations in data, which are often expensive to get. In this paper, we tackle an annotation-free setting and propose a self-guided spurious correlation mitigation framework. Our framework automatically constructs fine-grained training labels tailored for a classifier obtained with empirical risk minimization to improve its robustness against spurious correlations. The fine-grained training labels are formulated with different prediction behaviors of the classifier identified in a novel spuriousness embedding space. We construct the space with automatically detected conceptual attributes and a novel spuriousness metric which measures how likely a class-attribute correlation is exploited for predictions. We demonstrate that training the classifier to distinguish different prediction behaviors reduces its reliance on spurious correlations without knowing them a priori and outperforms prior methods on five real-world datasets.

As deep learning models become increasingly bigger and more complex, it is critical to improve model training and inference efficiency. Though a variety of highly optimized libraries and packages (known as DL kernels) have been developed, it is tedious and time-consuming to figure out which kernel to use, where to use, and how to use them correctly. To address this challenge, we propose an Automated Deep learning OPTimization approach called Adopter. We design a Domain-Specific Language (DSL) to represent DL model architectures and leverage this DSL to specify model transformation rules required to integrate a DL kernel into a model. Given the source code of a DL model and the transformation rules for a set of kernels, Adopter first performs inter-procedural analysis to identify and express the model architecture in our DSL. Then, Adopter performs scope analysis and sub-sequence matching to identify locations in the model architecture where the transformation rules can be applied. Finally, Adopter proposes a synthesis-based code transformation method to apply the transformation rule. We curated a benchmark with 199 models from Hugging Face and a diverse set of DL kernels. We found that, compared to a state-of-the-art automated code transformation technique, Adopter helps improve the precision and recall by 3% and 56%, respectively. An in-depth analysis of 9 models revealed that on average, Adopter improved the training speed by 22.7% while decreasing the GPU memory usage by 10.5%.

An open problem in differentially private deep learning is hyperparameter optimization (HPO). DP-SGD introduces new hyperparameters and complicates existing ones, forcing researchers to painstakingly tune hyperparameters with hundreds of trials, which in turn makes it impossible to account for the privacy cost of HPO without destroying the utility. We propose an adaptive HPO method that uses cheap trials (in terms of privacy cost and runtime) to estimate optimal hyperparameters and scales them up. We obtain state-of-the-art performance on 22 benchmark tasks, across computer vision and natural language processing, across pretraining and finetuning, across architectures and a wide range of $\varepsilon \in [0.01,8.0]$, all while accounting for the privacy cost of HPO.

Recent advances in self-supervised learning have highlighted the efficacy of data augmentation in learning data representation from unlabeled data. Training a linear model atop these enhanced representations can yield an adept classifier. Despite the remarkable empirical performance, the underlying mechanisms that enable data augmentation to unravel nonlinear data structures into linearly separable representations remain elusive. This paper seeks to bridge this gap by investigating under what conditions learned representations can linearly separate manifolds when data is drawn from a multi-manifold model. Our investigation reveals that data augmentation offers additional information beyond observed data and can thus improve the information-theoretic optimal rate of linear separation capacity. In particular, we show that self-supervised learning can linearly separate manifolds with a smaller distance than unsupervised learning, underscoring the additional benefits of data augmentation. Our theoretical analysis further underscores that the performance of downstream linear classifiers primarily hinges on the linear separability of data representations rather than the size of the labeled data set, reaffirming the viability of constructing efficient classifiers with limited labeled data amid an expansive unlabeled data set.

Sim2real transfer has received increasing attention lately due to the success of learning robotic tasks in simulation end-to-end. While there has been a lot of progress in transferring vision-based navigation policies, the existing sim2real strategy for audio-visual navigation performs data augmentation empirically without measuring the acoustic gap. The sound differs from light in that it spans across much wider frequencies and thus requires a different solution for sim2real. We propose the first treatment of sim2real for audio-visual navigation by disentangling it into acoustic field prediction (AFP) and waypoint navigation. We first validate our design choice in the SoundSpaces simulator and show improvement on the Continuous AudioGoal navigation benchmark. We then collect real-world data to measure the spectral difference between the simulation and the real world by training AFP models that only take a specific frequency subband as input. We further propose a frequency-adaptive strategy that intelligently selects the best frequency band for prediction based on both the measured spectral difference and the energy distribution of the received audio, which improves the performance on the real data. Lastly, we build a real robot platform and show that the transferred policy can successfully navigate to sounding objects. This work demonstrates the potential of building intelligent agents that can see, hear, and act entirely from simulation, and transferring them to the real world.

This study explores the application of deep learning technologies in software development processes, particularly in automating code reviews, error prediction, and test generation to enhance code quality and development efficiency. Through a series of empirical studies, experimental groups using deep learning tools and control groups using traditional methods were compared in terms of code error rates and project completion times. The results demonstrated significant improvements in the experimental group, validating the effectiveness of deep learning technologies. The research also discusses potential optimization points, methodologies, and technical challenges of deep learning in software development, as well as how to integrate these technologies into existing software development workflows.

Rapid advancements of deep learning are accelerating adoption in a wide variety of applications, including safety-critical applications such as self-driving vehicles, drones, robots, and surveillance systems. These advancements include applying variations of sophisticated techniques that improve the performance of models. However, such models are not immune to adversarial manipulations, which can cause the system to misbehave and remain unnoticed by experts. The frequency of modifications to existing deep learning models necessitates thorough analysis to determine the impact on models' robustness. In this work, we present an experimental evaluation of the effects of model modifications on deep learning model robustness using adversarial attacks. Our methodology involves examining the robustness of variations of models against various adversarial attacks. By conducting our experiments, we aim to shed light on the critical issue of maintaining the reliability and safety of deep learning models in safety- and security-critical applications. Our results indicate the pressing demand for an in-depth assessment of the effects of model changes on the robustness of models.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

北京阿比特科技有限公司