亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of ensuring confidentiality of dataset properties aggregated over many records of a dataset. Such properties can encode sensitive information, such as trade secrets or demographic data, while involving a notion of data protection different to the privacy of individual records typically discussed in the literature. In this work, we demonstrate how a distribution privacy framework can be applied to formalize such data confidentiality. We extend the Wasserstein Mechanism from Pufferfish privacy and the Gaussian Mechanism from attribute privacy to this framework, then analyze their underlying data assumptions and how they can be relaxed. We then empirically evaluate the privacy-utility tradeoffs of these mechanisms and apply them against a practical property inference attack which targets global properties of datasets. The results show that our mechanisms can indeed reduce the effectiveness of the attack while providing utility substantially greater than a crude group differential privacy baseline. Our work thus provides groundwork for theoretical mechanisms for protecting global properties of datasets along with their evaluation in practice.

相關內容

一個具體事物,總是有許許多多的性質與關系,我們把一個事物的性質與關系,都叫作事物的屬性。 事物與屬性是不可分的,事物都是有屬性的事物,屬性也都是事物的屬性。 一個事物與另一個事物的相同或相異,也就是一個事物的屬性與另一事物的屬性的相同或相異。 由于事物屬性的相同或相異,客觀世界中就形成了許多不同的事物類。具有相同屬性的事物就形成一類,具有不同屬性的事物就分別地形成不同的類。

Echo State Networks (ESN) are a type of Recurrent Neural Network that yields promising results in representing time series and nonlinear dynamic systems. Although they are equipped with a very efficient training procedure, Reservoir Computing strategies, such as the ESN, require high-order networks, i.e., many neurons, resulting in a large number of states that are magnitudes higher than the number of model inputs and outputs. A large number of states not only makes the time-step computation more costly but also may pose robustness issues, especially when applying ESNs to problems such as Model Predictive Control (MPC) and other optimal control problems. One way to circumvent this complexity issue is through Model Order Reduction strategies such as the Proper Orthogonal Decomposition (POD) and its variants (POD-DEIM), whereby we find an equivalent lower order representation to an already trained high dimension ESN. To this end, this work aims to investigate and analyze the performance of POD methods in Echo State Networks, evaluating their effectiveness through the Memory Capacity (MC) of the POD-reduced network compared to the original (full-order) ESN. We also perform experiments on two numerical case studies: a NARMA10 difference equation and an oil platform containing two wells and one riser. The results show that there is little loss of performance comparing the original ESN to a POD-reduced counterpart and that the performance of a POD-reduced ESN tends to be superior to a normal ESN of the same size. Also, the POD-reduced network achieves speedups of around $80\%$ compared to the original ESN.

We propose a unifying framework for smoothed analysis of combinatorial local optimization problems and show how a diverse selection of problems within the complexity class PLS can be cast within this model. This abstraction allows us to identify key structural properties, and corresponding parameters, that determine the smoothed running time of local search dynamics. We formalize this via a black-box tool that provides concrete bounds on the expected maximum number of steps needed until local search reaches an exact local optimum. This bound is particularly strong, in the sense that it holds for any starting feasible solution, any choice of pivoting rule, and does not rely on the choice of specific noise distributions that are applied on the input, but it is parameterized by just a global upper bound $\phi$ on the probability density. We then demonstrate the power of this tool by instantiating it for various PLS-hard problems to derive efficient smoothed running times. This not only unifies, and greatly simplifies, prior existing positive results, but also allows us to extend or improve them. Notable problems on which we provide such a contribution are Max-Cut, the Travelling Salesman problem, and Network Coordination Games. Additionally, in this paper we propose novel smoothed analysis formulations, and prove polynomial smoothed running times, for important local optimization problems that have not been studied before from this perspective. Importantly, we provide an extensive study of the problem of finding pure Nash equilibria in general and Network Congestion Games under various representation models, including explicit, step-function, and polynomial latencies. We show that all the problems we study can be solved by their standard local search algorithms in polynomial smoothed time on PLS-hard instances in which these algorithms have exponential worst-case running time.

Seq2seq models have been shown to struggle with compositional generalization in semantic parsing, i.e. generalizing to unseen compositions of phenomena that the model handles correctly in isolation. We phrase semantic parsing as a two-step process: we first tag each input token with a multiset of output tokens. Then we arrange the tokens into an output sequence using a new way of parameterizing and predicting permutations. We formulate predicting a permutation as solving a regularized linear program and we backpropagate through the solver. In contrast to prior work, our approach does not place a priori restrictions on possible permutations, making it very expressive. Our model outperforms pretrained seq2seq models and prior work on realistic semantic parsing tasks that require generalization to longer examples. We also outperform non-tree-based models on structural generalization on the COGS benchmark. For the first time, we show that a model without an inductive bias provided by trees achieves high accuracy on generalization to deeper recursion.

Mobile crowd sensing (MCS) has emerged as an increasingly popular sensing paradigm due to its cost-effectiveness. This approach relies on platforms to outsource tasks to participating workers when prompted by task publishers. Although incentive mechanisms have been devised to foster widespread participation in MCS, most of them focus only on static tasks (i.e., tasks for which the timing and type are known in advance) and do not protect the privacy of worker bids. In a dynamic and resource-constrained environment, tasks are often uncertain (i.e., the platform lacks a priori knowledge about the tasks) and worker bids may be vulnerable to inference attacks. This paper presents HERALD*, an incentive mechanism that addresses these issues through the use of uncertainty and hidden bids. Theoretical analysis reveals that HERALD* satisfies a range of critical criteria, including truthfulness, individual rationality, differential privacy, low computational complexity, and low social cost. These properties are then corroborated through a series of evaluations.

In this work, we propose an efficient two-stage algorithm solving a joint problem of correlation detection and partial alignment recovery between two Gaussian databases. Correlation detection is a hypothesis testing problem; under the null hypothesis, the databases are independent, and under the alternate hypothesis, they are correlated, under an unknown row permutation. We develop bounds on the type-I and type-II error probabilities, and show that the analyzed detector performs better than a recently proposed detector, at least for some specific parameter choices. Since the proposed detector relies on a statistic, which is a sum of dependent indicator random variables, then in order to bound the type-I probability of error, we develop a novel graph-theoretic technique for bounding the $k$-th order moments of such statistics. When the databases are accepted as correlated, the algorithm also recovers some partial alignment between the given databases. We also propose two more algorithms: (i) One more algorithm for partial alignment recovery, whose reliability and computational complexity are both higher than those of the first proposed algorithm. (ii) An algorithm for full alignment recovery, which has a reduced amount of calculations and a not much lower error probability, when compared to the optimal recovery procedure.

A plethora of approaches have been proposed for joint entity-relation (ER) extraction. Most of these methods largely depend on a large amount of manually annotated training data. However, manual data annotation is time consuming, labor intensive, and error prone. Human beings learn using both data (through induction) and knowledge (through deduction). Answer Set Programming (ASP) has been a widely utilized approach for knowledge representation and reasoning that is elaboration tolerant and adept at reasoning with incomplete information. This paper proposes a new approach, ASP-enhanced Entity-Relation extraction (ASPER), to jointly recognize entities and relations by learning from both data and domain knowledge. In particular, ASPER takes advantage of the factual knowledge (represented as facts in ASP) and derived knowledge (represented as rules in ASP) in the learning process of neural network models. We have conducted experiments on two real datasets and compare our method with three baselines. The results show that our ASPER model consistently outperforms the baselines.

Personalized privacy becomes critical in deep learning for Trustworthy AI. While Differentially Private Stochastic Gradient Descent (DP-SGD) is widely used in deep learning methods supporting privacy, it provides the same level of privacy to all individuals, which may lead to overprotection and low utility. In practice, different users may require different privacy levels, and the model can be improved by using more information about the users with lower privacy requirements. There are also recent works on differential privacy of individuals when using DP-SGD, but they are mostly about individual privacy accounting and do not focus on satisfying different privacy levels. We thus extend DP-SGD to support a recent privacy notion called ($\Phi$,$\Delta$)-Personalized Differential Privacy (($\Phi$,$\Delta$)-PDP), which extends an existing PDP concept called $\Phi$-PDP. Our algorithm uses a multi-round personalized sampling mechanism and embeds it within the DP-SGD iterations. Experiments on real datasets show that our algorithm outperforms DP-SGD and simple combinations of DP-SGD with existing PDP mechanisms in terms of model performance and efficiency due to its embedded sampling mechanism.

We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters, which facilitates the trade-off between privacy and utility. The algorithm is applicable to arbitrary privacy measurements that maps from the distortion to a real value. It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning. Such adaptive and fine-grained protection can improve the effectiveness of privacy-preserved federated learning. Theoretically, we show that gap between the utility loss of the protection hyperparameter output by our algorithm and that of the optimal protection hyperparameter is sub-linear in the total number of iterations. The sublinearity of our algorithm indicates that the average gap between the performance of our algorithm and that of the optimal performance goes to zero when the number of iterations goes to infinity. Further, we provide the convergence rate of our proposed algorithm. We conduct empirical results on benchmark datasets to verify that our method achieves better utility than the baseline methods under the same privacy budget.

We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

北京阿比特科技有限公司