Background and Objective: The lack of benchmark datasets has impeded the development of slice-to-volume registration algorithms. Such datasets are difficult to annotate, primarily due to the dimensional difference within data and the dearth of task-specific software. We aim to develop a user-friendly tool to streamline dataset annotation for slice-to-volume registration. Methods: The proposed tool, named SVRDA, is an installation-free web application for platform-agnostic collaborative dataset annotation. It enables efficient transformation manipulation via keyboard shortcuts and smooth case transitions with auto-saving. SVRDA supports configuration-based data loading and adheres to the separation of concerns, offering great flexibility and extensibility for future research. Various supplementary features have been implemented to facilitate slice-to-volume registration. Results: We validated the effectiveness of SVRDA by indirectly evaluating the post-registration segmentation quality on UK Biobank data, observing a dramatic overall improvement (24.02% in the Dice Similarity Coefficient and 48.93% in the 95th percentile Hausdorff distance, respectively) supported by highly statistically significant evidence ($p<0.001$).We further showcased the clinical usage of SVRDA by integrating it into test-retest T1 quantification on in-house magnetic resonance images, leading to more consistent results after registration. Conclusions: SVRDA can facilitate collaborative annotation of benchmark datasets while being potentially applicable to other pipelines incorporating slice-to-volume registration. Full source code and documentation are available at //github.com/Roldbach/SVRDA
Modeling dynamics in the form of partial differential equations (PDEs) is an effectual way to understand real-world physics processes. For complex physics systems, analytical solutions are not available and numerical solutions are widely-used. However, traditional numerical algorithms are computationally expensive and challenging in handling multiphysics systems. Recently, using neural networks to solve PDEs has made significant progress, called physics-informed neural networks (PINNs). PINNs encode physical laws into neural networks and learn the continuous solutions of PDEs. For the training of PINNs, existing methods suffer from the problems of inefficiency and unstable convergence, since the PDE residuals require calculating automatic differentiation. In this paper, we propose Dynamic Mesh-based Importance Sampling (DMIS) to tackle these problems. DMIS is a novel sampling scheme based on importance sampling, which constructs a dynamic triangular mesh to estimate sample weights efficiently. DMIS has broad applicability and can be easily integrated into existing methods. The evaluation of DMIS on three widely-used benchmarks shows that DMIS improves the convergence speed and accuracy in the meantime. Especially in solving the highly nonlinear Schr\"odinger Equation, compared with state-of-the-art methods, DMIS shows up to 46% smaller root mean square error and five times faster convergence speed. Code are available at //github.com/MatrixBrain/DMIS.
A novel method, named Curvature-Augmented Manifold Embedding and Learning (CAMEL), is proposed for high dimensional data classification, dimension reduction, and visualization. CAMEL utilizes a topology metric defined on the Riemannian manifold, and a unique Riemannian metric for both distance and curvature to enhance its expressibility. The method also employs a smooth partition of unity operator on the Riemannian manifold to convert localized orthogonal projection to global embedding, which captures both the overall topological structure and local similarity simultaneously. The local orthogonal vectors provide a physical interpretation of the significant characteristics of clusters. Therefore, CAMEL not only provides a low-dimensional embedding but also interprets the physics behind this embedding. CAMEL has been evaluated on various benchmark datasets and has shown to outperform state-of-the-art methods, especially for high-dimensional datasets. The method's distinct benefits are its high expressibility, interpretability, and scalability. The paper provides a detailed discussion on Riemannian distance and curvature metrics, physical interpretability, hyperparameter effect, manifold stability, and computational efficiency for a holistic understanding of CAMEL. Finally, the paper presents the limitations and future work of CAMEL along with key conclusions.
Although diffusion models in text-to-speech have become a popular choice due to their strong generative ability, the intrinsic complexity of sampling from diffusion models harms their efficiency. Alternatively, we propose VoiceFlow, an acoustic model that utilizes a rectified flow matching algorithm to achieve high synthesis quality with a limited number of sampling steps. VoiceFlow formulates the process of generating mel-spectrograms into an ordinary differential equation conditional on text inputs, whose vector field is then estimated. The rectified flow technique then effectively straightens its sampling trajectory for efficient synthesis. Subjective and objective evaluations on both single and multi-speaker corpora showed the superior synthesis quality of VoiceFlow compared to the diffusion counterpart. Ablation studies further verified the validity of the rectified flow technique in VoiceFlow.
As a fundamental tool for natural language processing (NLP), the part-of-speech (POS) tagger assigns the POS label to each word in a sentence. A novel lightweight POS tagger based on word embeddings is proposed and named GWPT (green word-embedding-based POS tagger) in this work. Following the green learning (GL) methodology, GWPT contains three modules in cascade: 1) representation learning, 2) feature learning, and 3) decision learning modules. The main novelty of GWPT lies in representation learning. It uses non-contextual or contextual word embeddings, partitions embedding dimension indices into low-, medium-, and high-frequency sets, and represents them with different N-grams. It is shown by experimental results that GWPT offers state-of-the-art accuracies with fewer model parameters and significantly lower computational complexity in both training and inference as compared with deep-learning-based methods.
Design patterns (DPs) are recognised as a good practice in software development. However, the lack of appropriate documentation often hampers traceability, and their benefits are blurred among thousands of lines of code. Automatic methods for DP detection have become relevant but are usually based on the rigid analysis of either software metrics or specific properties of the source code. We propose GEML, a novel detection approach based on evolutionary machine learning using software properties of diverse nature. Firstly, GEML makes use of an evolutionary algorithm to extract those characteristics that better describe the DP, formulated in terms of human-readable rules, whose syntax is conformant with a context-free grammar. Secondly, a rule-based classifier is built to predict whether new code contains a hidden DP implementation. GEML has been validated over five DPs taken from a public repository recurrently adopted by machine learning studies. Then, we increase this number up to 15 diverse DPs, showing its effectiveness and robustness in terms of detection capability. An initial parameter study served to tune a parameter setup whose performance guarantees the general applicability of this approach without the need to adjust complex parameters to a specific pattern. Finally, a demonstration tool is also provided.
Advancing automated programming necessitates robust and comprehensive code generation benchmarks, yet current evaluation frameworks largely neglect object-oriented programming (OOP) in favor of functional programming (FP), e.g., HumanEval and MBPP. To address this, our study introduces a pioneering OOP-focused benchmark, featuring 431 Python programs that encompass essential OOP concepts and features like classes and encapsulation methods. We propose a novel evaluation metric, pass@o, tailored for OOP, enhancing traditional pass@k measures. Our evaluation of 23 leading large language models (LLMs), including both general and code-specialized models, reveals three key insights: 1) pass@o offers a more relevant and comprehensive assessment for OOP code generation; 2) Despite excelling in FP, code-specialized LLMs like WizardCoder lag in OOP compared to models like ChatGPT; 3) The poor performance of all advanced LLMs on our OOP benchmark highlights a critical need for improvements in this field. Our benchmark and scripts are publicly released at: //github.com/alphadl/OOP-eval.
The traditional two-factor authentication (2FA) methods primarily rely on the user manually entering a code or token during the authentication process. This can be burdensome and time-consuming, particularly for users who must be authenticated frequently. To tackle this challenge, we present a novel 2FA approach replacing the user's input with decisions made by Machine Learning (ML) that continuously verifies the user's identity with zero effort. Our system exploits unique environmental features associated with the user, such as beacon frame characteristics and Received Signal Strength Indicator (RSSI) values from Wi-Fi Access Points (APs). These features are gathered and analyzed in real-time by our ML algorithm to ascertain the user's identity. For enhanced security, our system mandates that the user's two devices (i.e., a login device and a mobile device) be situated within a predetermined proximity before granting access. This precaution ensures that unauthorized users cannot access sensitive information or systems, even with the correct login credentials. Through experimentation, we have demonstrated our system's effectiveness in determining the location of the user's devices based on beacon frame characteristics and RSSI values, achieving an accuracy of 92.4%. Additionally, we conducted comprehensive security analysis experiments to evaluate the proposed 2FA system's resilience against various cyberattacks. Our findings indicate that the system exhibits robustness and reliability in the face of these threats. The scalability, flexibility, and adaptability of our system render it a promising option for organizations and users seeking a secure and convenient authentication system.
This paper addresses the significant challenge in open-set object detection (OSOD): the tendency of state-of-the-art detectors to erroneously classify unknown objects as known categories with high confidence. We present a novel approach that effectively identifies unknown objects by distinguishing between high and low-density regions in latent space. Our method builds upon the Open-Det (OD) framework, introducing two new elements to the loss function. These elements enhance the known embedding space's clustering and expand the unknown space's low-density regions. The first addition is the Class Wasserstein Anchor (CWA), a new function that refines the classification boundaries. The second is a spectral normalisation step, improving the robustness of the model. Together, these augmentations to the existing Contrastive Feature Learner (CFL) and Unknown Probability Learner (UPL) loss functions significantly improve OSOD performance. Our proposed OpenDet-CWA (OD-CWA) method demonstrates: a) a reduction in open-set errors by approximately 17%-22%, b) an enhancement in novelty detection capability by 1.5%-16%, and c) a decrease in the wilderness index by 2%-20% across various open-set scenarios. These results represent a substantial advancement in the field, showcasing the potential of our approach in managing the complexities of open-set object detection.
In-context learning with large language models (LLMs) excels at adapting to various tasks rapidly. However, its success hinges on carefully selecting demonstrations, which remains an obstacle in practice. Current approaches to this problem either rely on hard-to-acquire external supervision or require frequent interactions with LLMs, resulting in high costs. We propose a new method called In-Context Reflection (ICR) to overcome these challenges. ICR strategically selects demonstrations to reduce the discrepancy between the LLM's outputs and the actual input-output mappings. Specifically, ICR starts with a random set of initial demonstrations, then iteratively refines it. In each step, it analyzes a pool of candidate examples and identifies the ones most likely to challenge the LLM's current understanding, measured by a new metric called misconfidence. These most confusing examples are then selected to replace the less informative demonstrations in the current set. Our comprehensive evaluation across five diverse datasets encompassing 13 subtasks shows the efficacy of ICR. Compared to existing methods, ICR achieves an average performance boost of 4%, while demonstrating remarkable cross-task generalization capabilities.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.