亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Purpose: In this paper, we establish a baseline for handwritten stenography recognition, using the novel LION dataset, and investigate the impact of including selected aspects of stenographic theory into the recognition process. We make the LION dataset publicly available with the aim of encouraging future research in handwritten stenography recognition. Methods: A state-of-the-art text recognition model is trained to establish a baseline. Stenographic domain knowledge is integrated by applying four different encoding methods that transform the target sequence into representations, which approximate selected aspects of the writing system. Results are further improved by integrating a pre-training scheme, based on synthetic data. Results: The baseline model achieves an average test character error rate (CER) of 29.81% and a word error rate (WER) of 55.14%. Test error rates are reduced significantly by combining stenography-specific target sequence encodings with pre-training and fine-tuning, yielding CERs in the range of 24.5% - 26% and WERs of 44.8% - 48.2%. Conclusion: The obtained results demonstrate the challenging nature of stenography recognition. Integrating stenography-specific knowledge, in conjunction with pre-training and fine-tuning on synthetic data, yields considerable improvements. Together with our precursor study on the subject, this is the first work to apply modern handwritten text recognition to stenography. The dataset and our code are publicly available via Zenodo.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

This paper presents a novel approach to generating the 3D motion of a human interacting with a target object, with a focus on solving the challenge of synthesizing long-range and diverse motions, which could not be fulfilled by existing auto-regressive models or path planning-based methods. We propose a hierarchical generation framework to solve this challenge. Specifically, our framework first generates a set of milestones and then synthesizes the motion along them. Therefore, the long-range motion generation could be reduced to synthesizing several short motion sequences guided by milestones. The experiments on the NSM, COUCH, and SAMP datasets show that our approach outperforms previous methods by a large margin in both quality and diversity. The source code is available on our project page //zju3dv.github.io/hghoi.

In this paper we propose two new subclasses of Petri nets with resets, for which the reachability and coverability problems become tractable. We add an acyclicity condition that only applies to the consumptions and productions, not the resets. The first class is acyclic Petri nets with resets, and we show that coverability is PSPACE-complete for them. This contrasts the known Ackermann-hardness for coverability in (not necessarily acyclic) Petri nets with resets. We prove that the reachability problem remains undecidable for acyclic Petri nets with resets. The second class concerns workflow nets, a practically motivated and natural subclass of Petri nets. Here, we show that both coverability and reachability in acyclic workflow nets with resets are PSPACE-complete. Without the acyclicity condition, reachability and coverability in workflow nets with resets are known to be equally hard as for Petri nets with resets, that being Ackermann-hard and undecidable, respectively.

This paper presents, for the first time, a novel Decentralized IDentifier (DID) Method called Over-The-Tangle and discusses its design and working principles that leverage the IOTA Tangle as the Root-of-Trust for identity data. The results of a long lasting experimental test campaign in real-world settings suggests the adoption of a private gateway node synchronised with the IOTA Tangle on the mainnet for efficient DID control. Moreover, the paper promotes the integration of the DID technology into OpenSSL through the use of Providers. A novel DID Operation and Provider is presented as a solution for building DID Method agility in OpenSSL.

Triangular meshes are a widely used representation in the field of 3D modeling. In this paper, we present a novel approach for edge length-based linear subdivision on triangular meshes, along with two auxiliary techniques. We conduct a comprehensive comparison of different subdivision methods in terms of computational capabilities and mesh-enhancing abilities. Our proposed approach demonstrates improved computational efficiency and generates fewer elements with higher quality compared to existing methods. The improvement in computational efficiency and mesh augmentation capability of our method is further enhanced when working with the two auxiliary techniques presented in this paper. Our novel strategy represents a significant contribution to the field and has important implications for local mesh refinement, computer-aided design, and isotropic remeshing.

In this paper, we comprehensively analyze the vertical and horizontal extensions of existing memory hierarchy. The difference between memory and big memory is well reported. We present the state-of-the-art studies upon the big memory systems, together with design methodology and implementations. Persistence is the first principle of big memory systems. We further show the full-stack and moving persistence.

In this paper, we present Gaussian Splatting based text-to-3D generation (GSGEN), a novel approach for generating high-quality 3D objects. Previous methods suffer from inaccurate geometry and limited fidelity due to the absence of 3D prior and proper representation. We leverage 3D Gaussian Splatting, a recent state-of-the-art representation, to address existing shortcomings by exploiting the explicit nature that enables the incorporation of 3D prior. Specifically, our method adopts a progressive optimization strategy, which includes a geometry optimization stage and an appearance refinement stage. In geometry optimization, a coarse representation is established under a 3D geometry prior along with the ordinary 2D SDS loss, ensuring a sensible and 3D-consistent rough shape. Subsequently, the obtained Gaussians undergo an iterative refinement to enrich details. In this stage, we increase the number of Gaussians by compactness-based densification to enhance continuity and improve fidelity. With these designs, our approach can generate 3D content with delicate details and more accurate geometry. Extensive evaluations demonstrate the effectiveness of our method, especially for capturing high-frequency components. Video results are provided at //gsgen3d.github.io. Our code is available at //github.com/gsgen3d/gsgen

In this paper, we introduce SCALE, a collaborative framework that connects compact Specialized Translation Models (STMs) and general-purpose Large Language Models (LLMs) as one unified translation engine. By introducing translation from STM into the triplet in-context demonstrations, SCALE unlocks refinement and pivoting ability of LLM, thus mitigating language bias of LLM and parallel data bias of STM, enhancing LLM speciality without sacrificing generality, and facilitating continual learning without expensive LLM fine-tuning. Our comprehensive experiments show that SCALE significantly outperforms both few-shot LLMs (GPT-4) and specialized models (NLLB) in challenging low-resource settings. Moreover, in Xhosa to English translation, SCALE experiences consistent improvement by a 4 BLEURT score without tuning LLM and surpasses few-shot GPT-4 by 2.5 COMET score and 3.8 BLEURT score when equipped with a compact model consisting of merely 600M parameters. SCALE could also effectively exploit the existing language bias of LLMs by using an English-centric STM as a pivot for translation between any language pairs, outperforming few-shot GPT-4 by an average of 6 COMET points across eight translation directions. Furthermore we provide an in-depth analysis of SCALE's robustness, translation characteristics, and latency costs, providing solid foundation for future studies exploring the potential synergy between LLMs and more specialized, task-specific models.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司