亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a novel approach to generating the 3D motion of a human interacting with a target object, with a focus on solving the challenge of synthesizing long-range and diverse motions, which could not be fulfilled by existing auto-regressive models or path planning-based methods. We propose a hierarchical generation framework to solve this challenge. Specifically, our framework first generates a set of milestones and then synthesizes the motion along them. Therefore, the long-range motion generation could be reduced to synthesizing several short motion sequences guided by milestones. The experiments on the NSM, COUCH, and SAMP datasets show that our approach outperforms previous methods by a large margin in both quality and diversity. The source code is available on our project page //zju3dv.github.io/hghoi.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Automator · TOOLS · 知識 (knowledge) · Use Case ·
2023 年 11 月 16 日

This paper introduces a novel approach to enhance Large Language Models (LLMs) with expert knowledge to automate the analysis of corporate sustainability reports by benchmarking them against the Task Force for Climate-Related Financial Disclosures (TCFD) recommendations. Corporate sustainability reports are crucial in assessing organizations' environmental and social risks and impacts. However, analyzing these reports' vast amounts of information makes human analysis often too costly. As a result, only a few entities worldwide have the resources to analyze these reports, which could lead to a lack of transparency. While AI-powered tools can automatically analyze the data, they are prone to inaccuracies as they lack domain-specific expertise. This paper introduces a novel approach to enhance LLMs with expert knowledge to automate the analysis of corporate sustainability reports. We christen our tool CHATREPORT, and apply it in a first use case to assess corporate climate risk disclosures following the TCFD recommendations. CHATREPORT results from collaborating with experts in climate science, finance, economic policy, and computer science, demonstrating how domain experts can be involved in developing AI tools. We make our prompt templates, generated data, and scores available to the public to encourage transparency.

In this paper, we design an efficient, multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation (AITV). The segmentation framework generally consists of two stages: smoothing and thresholding, thus referred to as SaT. In the first stage, a smoothed image is obtained by an AITV-regularized Mumford-Shah (MS) model, which can be solved efficiently by the alternating direction method of multipliers (ADMM) with a closed-form solution of a proximal operator of the $\ell_1 -\alpha \ell_2$ regularizer. Convergence of the ADMM algorithm is analyzed. In the second stage, we threshold the smoothed image by $K$-means clustering to obtain the final segmentation result. Numerical experiments demonstrate that the proposed segmentation framework is versatile for both grayscale and color images, efficient in producing high-quality segmentation results within a few seconds, and robust to input images that are corrupted with noise, blur, or both. We compare the AITV method with its original convex TV and nonconvex TV$^p (0<p<1)$ counterparts, showcasing the qualitative and quantitative advantages of our proposed method.

Our objective in this paper is to estimate spine curvature in DXA scans. To this end we first train a neural network to predict the middle spine curve in the scan, and then use an integral-based method to determine the curvature along the spine curve. We use the curvature to compare to the standard angle scoliosis measure obtained using the DXA Scoliosis Method (DSM). The performance improves over the prior work of Jamaludin et al. 2018. We show that the maximum curvature can be used as a scoring function for ordering the severity of spinal deformation.

The study explores the effectiveness of the Chain-of-Thought approach, known for its proficiency in language tasks by breaking them down into sub-tasks and intermediate steps, in improving vision-language tasks that demand sophisticated perception and reasoning. We present the "Description then Decision" strategy, which is inspired by how humans process signals. This strategy significantly improves probing task performance by 50%, establishing the groundwork for future research on reasoning paradigms in complex vision-language tasks.

The motivation for this paper is to detect when an irreducible projective variety V is not toric. We do this by analyzing a Lie group and a Lie algebra associated to V. If the dimension of V is strictly less than the dimension of the above mentioned objects, then V is not a toric variety. We provide an algorithm to compute the Lie algebra of an irreducible variety and use it to provide examples of non-toric statistical models in algebraic statistics.

The following submission constitutes a guide and an introduction to a collection of articles submitted as a Ph.D. dissertation at the University of Gda\'nsk. In the dissertation, we study the fundamental limitations within the selected quantum and supra-quantum cryptographic scenarios in the form of upper bounds on the achievable key rates. We investigate various security paradigms, bipartite and multipartite settings, as well as single-shot and asymptotic regimes. Our studies, however, extend beyond the derivations of the upper bounds on the secret key rates in the mentioned scenarios. In particular, we propose a novel type of rerouting attack on the quantum Internet for which we find a countermeasure and benchmark its efficiency. Furthermore, we propose several upper bounds on the performance of quantum (key) repeaters settings. We derive a lower bound on the secret key agreement capacity of a quantum network, which we tighten in an important case of a bidirectional quantum network. The squashed nonlocality derived here as an upper bound on the secret key rate is a novel non-faithful measure of nonlocality. Furthermore, the notion of the non-signaling complete extension arising from the complete extension postulate as a counterpart of purification of a quantum state allows us to study analogies between non-signaling and quantum key distribution scenarios.

This paper studies optimal estimation of large-dimensional nonlinear factor models. The key challenge is that the observed variables are possibly nonlinear functions of some latent variables where the functional forms are left unspecified. A local principal component analysis method is proposed to estimate the factor structure and recover information on latent variables and latent functions, which combines $K$-nearest neighbors matching and principal component analysis. Large-sample properties are established, including a sharp bound on the matching discrepancy of nearest neighbors, sup-norm error bounds for estimated local factors and factor loadings, and the uniform convergence rate of the factor structure estimator. Under mild conditions our estimator of the latent factor structure can achieve the optimal rate of uniform convergence for nonparametric regression. The method is illustrated with a Monte Carlo experiment and an empirical application studying the effect of tax cuts on economic growth.

This paper considers the secure aggregation problem for federated learning under an information theoretic cryptographic formulation, where distributed training nodes (referred to as users) train models based on their own local data and a curious-but-honest server aggregates the trained models without retrieving other information about users' local data. Secure aggregation generally contains two phases, namely key sharing phase and model aggregation phase. Due to the common effect of user dropouts in federated learning, the model aggregation phase should contain two rounds, where in the first round the users transmit masked models and, in the second round, according to the identity of surviving users after the first round, these surviving users transmit some further messages to help the server decrypt the sum of users' trained models. The objective of the considered information theoretic formulation is to characterize the capacity region of the communication rates in the two rounds from the users to the server in the model aggregation phase, assuming that key sharing has already been performed offline in prior. In this context, Zhao and Sun completely characterized the capacity region under the assumption that the keys can be arbitrary random variables. More recently, an additional constraint, known as "uncoded groupwise keys," has been introduced. This constraint entails the presence of multiple independent keys within the system, with each key being shared by precisely S users. The capacity region for the information-theoretic secure aggregation problem with uncoded groupwise keys was established in our recent work subject to the condition S > K - U, where K is the number of total users and U is the designed minimum number of surviving users. In this paper we fully characterize of the the capacity region for this problem by proposing a new converse bound and an achievable scheme.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.

北京阿比特科技有限公司