亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we rethink the way that communication among users over the Internet, one of the fundamental outcomes of the Internet evolution, takes place. Instead of users communicating directly over the Internet, we explore an architecture that enables users to communicate with (query) Large Language Models (LLMs) that capture the cognition of users on the other end of the communication channel. We present an architecture to achieve such LLM-based communication and we perform a reality check to assess how close we are today to realizing such a communication architecture from a technical point of view. Finally, we discuss several research challenges and identify interesting directions for future research.

相關內容

In this paper, we aim to build a novel bandits algorithm that is capable of fully harnessing the power of multi-dimensional data and the inherent non-linearity of reward functions to provide high-usable and accountable decision-making services. To this end, we introduce a generalized low-rank tensor contextual bandits model in which an action is formed from three feature vectors, and thus can be represented by a tensor. In this formulation, the reward is determined through a generalized linear function applied to the inner product of the action's feature tensor and a fixed but unknown parameter tensor with a low tubal rank. To effectively achieve the trade-off between exploration and exploitation, we introduce a novel algorithm called "Generalized Low-Rank Tensor Exploration Subspace then Refine" (G-LowTESTR). This algorithm first collects raw data to explore the intrinsic low-rank tensor subspace information embedded in the decision-making scenario, and then converts the original problem into an almost lower-dimensional generalized linear contextual bandits problem. Rigorous theoretical analysis shows that the regret bound of G-LowTESTR is superior to those in vectorization and matricization cases. We conduct a series of simulations and real data experiments to further highlight the effectiveness of G-LowTESTR, leveraging its ability to capitalize on the low-rank tensor structure for enhanced learning.

Deontological ethics, specifically understood through Immanuel Kant, provides a moral framework that emphasizes the importance of duties and principles, rather than the consequences of action. Understanding that despite the prominence of deontology, it is currently an overlooked approach in fairness metrics, this paper explores the compatibility of a Kantian deontological framework in fairness metrics, part of the AI alignment field. We revisit Kant's critique of utilitarianism, which is the primary approach in AI fairness metrics and argue that fairness principles should align with the Kantian deontological framework. By integrating Kantian ethics into AI alignment, we not only bring in a widely-accepted prominent moral theory but also strive for a more morally grounded AI landscape that better balances outcomes and procedures in pursuit of fairness and justice.

In this paper, we propose a novel text promptable surgical instrument segmentation approach to overcome challenges associated with diversity and differentiation of surgical instruments in minimally invasive surgeries. We redefine the task as text promptable, thereby enabling a more nuanced comprehension of surgical instruments and adaptability to new instrument types. Inspired by recent advancements in vision-language models, we leverage pretrained image and text encoders as our model backbone and design a text promptable mask decoder consisting of attention- and convolution-based prompting schemes for surgical instrument segmentation prediction. Our model leverages multiple text prompts for each surgical instrument through a new mixture of prompts mechanism, resulting in enhanced segmentation performance. Additionally, we introduce a hard instrument area reinforcement module to improve image feature comprehension and segmentation precision. Extensive experiments on several surgical instrument segmentation datasets demonstrate our model's superior performance and promising generalization capability. To our knowledge, this is the first implementation of a promptable approach to surgical instrument segmentation, offering significant potential for practical application in the field of robotic-assisted surgery. Code is available at //github.com/franciszzj/TP-SIS.

In this paper, we explore the usability of a custom eXtensible Robotic Language (XRL) we proposed. To evaluate the user experience and the interaction with the potential XRL-based software robot, we conducted an exploratory study comparing the notation of three business processes using our XRL language and two languages used by the leading RPA solutions. The results of our exploratory study show that the currently used XML-based formats perform worse in terms of conciseness and readability. Our new XRL language is promising in terms of increasing the readability of the language, thus reducing the time needed to automate business processes.

In this paper, we investigate the communication designs of over-the-air computation (AirComp) empowered federated learning (FL) systems considering uplink model aggregation and downlink model dissemination jointly. We first derive an upper bound on the expected difference between the training loss and the optimal loss, which reveals that optimizing the FL performance is equivalent to minimizing the distortion in the received global gradient vector at each edge node. As such, we jointly optimize each edge node transmit and receive equalization coefficients along with the edge server forwarding matrix to minimize the maximum gradient distortion across all edge nodes. We further utilize the MNIST dataset to evaluate the performance of the considered FL system in the context of the handwritten digit recognition task. Experiment results show that deploying multiple antennas at the edge server significantly reduces the distortion in the received global gradient vector, leading to a notable improvement in recognition accuracy compared to the single antenna case.

Multilingual pretrained language models serve as repositories of multilingual factual knowledge. Nevertheless, a substantial performance gap of factual knowledge probing exists between high-resource languages and low-resource languages, suggesting limited implicit factual knowledge transfer across languages in multilingual pretrained language models. This paper investigates the feasibility of explicitly transferring relatively rich factual knowledge from English to non-English languages. To accomplish this, we propose two parameter-free $\textbf{L}$anguage $\textbf{R}$epresentation $\textbf{P}$rojection modules (LRP2). The first module converts non-English representations into English-like equivalents, while the second module reverts English-like representations back into representations of the corresponding non-English language. Experimental results on the mLAMA dataset demonstrate that LRP2 significantly improves factual knowledge retrieval accuracy and facilitates knowledge transferability across diverse non-English languages. We further investigate the working mechanism of LRP2 from the perspectives of representation space and cross-lingual knowledge neuron.

The Streetlight Effect represents an observation bias that occurs when individuals search for something only where it is easiest to look. Despite the significant development of Post-Publication Peer Review (PPPR) in recent years, facilitated in part by platforms such as PubPeer, existing literature has not examined whether PPPR is affected by this type of bias. In other words, if the PPPR mainly concerns publications to which researchers have direct access (eg to analyze image duplications, etc.). In this study, we compare the Open Access (OA) structures of publishers and journals among 51,882 publications commented on PubPeer to those indexed in OpenAlex database (\#156,700,177). Our findings indicate that OA journals are 33% more prevalent in PubPeer than in the global total (52% for the most commented journals). This result can be attributed to disciplinary bias in PubPeer, with overrepresentation of medical and biological research (which exhibits higher levels of openness). However, after normalization, the results reveal that PPPR does not exhibit a Streetlight Effect, as OA publications, within the same discipline, are on average 16% less prevalent in PubPeer than in the global total. These results suggest that the process of scientific self-correction operates independently of publication access status.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

北京阿比特科技有限公司