亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a novel text promptable surgical instrument segmentation approach to overcome challenges associated with diversity and differentiation of surgical instruments in minimally invasive surgeries. We redefine the task as text promptable, thereby enabling a more nuanced comprehension of surgical instruments and adaptability to new instrument types. Inspired by recent advancements in vision-language models, we leverage pretrained image and text encoders as our model backbone and design a text promptable mask decoder consisting of attention- and convolution-based prompting schemes for surgical instrument segmentation prediction. Our model leverages multiple text prompts for each surgical instrument through a new mixture of prompts mechanism, resulting in enhanced segmentation performance. Additionally, we introduce a hard instrument area reinforcement module to improve image feature comprehension and segmentation precision. Extensive experiments on several surgical instrument segmentation datasets demonstrate our model's superior performance and promising generalization capability. To our knowledge, this is the first implementation of a promptable approach to surgical instrument segmentation, offering significant potential for practical application in the field of robotic-assisted surgery. Code is available at //github.com/franciszzj/TP-SIS.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 近似 · Oracle · 路徑 · motivation ·
2023 年 12 月 27 日

In this paper, we present approximate distance and shortest-path oracles for fault-tolerant Euclidean spanners motivated by the routing problem in real-world road networks. An $f$-fault-tolerant Euclidean $t$-spanner for a set $V$ of $n$ points in $\mathbb{R}^d$ is a graph $G=(V,E)$ where, for any two points $p$ and $q$ in $V$ and a set $F$ of $f$ vertices of $V$, the distance between $p$ and $q$ in $G-F$ is at most $t$ times their Euclidean distance. Given an $f$-fault-tolerant Euclidean $t$-spanner $G$ with $O(n)$ edges and a constant $\varepsilon$, our data structure has size $O_{t,f}(n\log n)$, and this allows us to compute an $(1+\varepsilon)$-approximate distance in $G-F$ between $s$ and $s'$ can be computed in constant time for any two vertices $s$ and $s'$ and a set $F$ of $f$ failed vertices. Also, with a data structure of size $O_{t,f}(n\log n\log\log n)$, we can compute an $(1+\varepsilon)$-approximate shortest path in $G-F$ between $s$ and $s'$ in $O_{t,f}(\log^2 n\log\log n+\textsf{sol})$ time for any two vertices $s$ and $s'$ and a set $F$ of failed vertices, where $\textsf{sol}$ denotes the number of vertices in the returned path.

In this paper, we introduce MVSparse, a novel and efficient framework for cooperative multi-person tracking across multiple synchronized cameras. The MVSparse system is comprised of a carefully orchestrated pipeline, combining edge server-based models with distributed lightweight Reinforcement Learning (RL) agents operating on individual cameras. These RL agents intelligently select informative blocks within each frame based on historical camera data and detection outcomes from neighboring cameras, significantly reducing computational load and communication overhead. The edge server aggregates multiple camera views to perform detection tasks and provides feedback to the individual agents. By projecting inputs from various perspectives onto a common ground plane and applying deep detection models, MVSparse optimally leverages temporal and spatial redundancy in multi-view videos. Notably, our contributions include an empirical analysis of multi-camera pedestrian tracking datasets, the development of a multi-camera, multi-person detection pipeline, and the implementation of MVSparse, yielding impressive results on both open datasets and real-world scenarios. Experimentally, MVSparse accelerates overall inference time by 1.88X and 1.60X compared to a baseline approach while only marginally compromising tracking accuracy by 2.27% and 3.17%, respectively, showcasing its promising potential for efficient multi-camera tracking applications.

In this paper, we present a new construction of simplicial complexes of subpolynomial degree with arbitrarily good local spectral expansion. Previously, the only known high-dimensional expanders (HDXs) with arbitrarily good expansion and less than polynomial degree were based on one of two constructions, namely Ramanujan complexes and coset complexes. In contrast, our construction is a Cayley complex over the group $\mathbb{F}_2^k$, with Cayley generating set given by a Grassmannian HDX. Our construction is in part motivated by a coding-theoretic interpretation of Grassmannian HDXs that we present, which provides a formal connection between Grassmannian HDXs, simplicial HDXs, and LDPC codes. We apply this interpretation to prove a general characterization of the 1-homology groups over $\mathbb{F}_2$ of Cayley simplicial complexes over $\mathbb{F}_2^k$. Using this result, we construct simplicial complexes on $N$ vertices with arbitrarily good local expansion for which the dimension of the 1-homology group grows as $\Omega(\log^2N)$. No prior constructions in the literature have been shown to achieve as large a 1-homology group.

In this paper, we propose a cell-free scheme for unmanned aerial vehicle (UAV) base stations (BSs) to manage the severe intercell interference between terrestrial users and UAV-BSs of neighboring cells. Since the cell-free scheme requires enormous bandwidth for backhauling, we propose to use the sub-terahertz (sub-THz) band for the backhaul links between UAV-BSs and central processing unit (CPU). Also, because the sub-THz band requires a reliable line-of-sight link, we propose to use a high altitude platform station (HAPS) as a CPU. At the first time-slot of the proposed scheme, users send their messages to UAVs at the sub-6 GHz band. The UAVs then apply match-filtering and power allocation. At the second time-slot, at each UAV, orthogonal resource blocks are allocated for each user at the sub-THz band, and the signals are sent to the HAPS after analog beamforming. In the HAPS receiver, after analog beamforming, the message of each user is decoded. We formulate an optimization problem that maximizes the minimum signal-to-interference-plus-noise ratio of users by finding the optimum allocated power as well as the optimum locations of UAVs. Simulation results demonstrate the superiority of the proposed scheme compared with aerial cellular and terrestrial cell-free baseline schemes.

In this paper, we present a comprehensive evaluation to establish a robust and efficient framework for Lagrangian-based particle tracing using deep neural networks (DNNs). Han et al. (2021) first proposed a DNN-based approach to learn Lagrangian representations and demonstrated accurate particle tracing for an analytic 2D flow field. In this paper, we extend and build upon this prior work in significant ways. First, we evaluate the performance of DNN models to accurately trace particles in various settings, including 2D and 3D time-varying flow fields, flow fields from multiple applications, flow fields with varying complexity, as well as structured and unstructured input data. Second, we conduct an empirical study to inform best practices with respect to particle tracing model architectures, activation functions, and training data structures. Third, we conduct a comparative evaluation against prior techniques that employ flow maps as input for exploratory flow visualization. Specifically, we compare our extended model against its predecessor by Han et al. (2021), as well as the conventional approach that uses triangulation and Barycentric coordinate interpolation. Finally, we consider the integration and adaptation of our particle tracing model with different viewers. We provide an interactive web-based visualization interface by leveraging the efficiencies of our framework, and perform high-fidelity interactive visualization by integrating it with an OSPRay-based viewer. Overall, our experiments demonstrate that using a trained DNN model to predict new particle trajectories requires a low memory footprint and results in rapid inference. Following the best practices for large 3D datasets, our deep learning approach is shown to require approximately 46 times less memory while being more than 400 times faster than the conventional methods.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司