This manuscript gives a theoretical framework for a new Hilbert space of functions, the so called occupation kernel Hilbert space (OKHS), that operate on collections of signals rather than real or complex numbers. To support this new definition, an explicit class of OKHSs is given through the consideration of a reproducing kernel Hilbert space (RKHS). This space enables the definition of nonlocal operators, such as fractional order Liouville operators, as well as spectral decomposition methods for corresponding fractional order dynamical systems. In this manuscript, a fractional order DMD routine is presented, and the details of the finite rank representations are given. Significantly, despite the added theoretical content through the OKHS formulation, the resultant computations only differ slightly from that of occupation kernel DMD methods for integer order systems posed over RKHSs.
Nowadays, data are richly accessible to accumulate, and the increasingly powerful capability with computing offers reasonable ease of handling big data. This remarkable scenario leads to a new way for solving some control problems which was previously hard to analyze and solve. In this paper, a new type of control methods, namely control with patterns (CWP), is proposed to handle data sets corresponding to nonlinear dynamical systems subject to a discrete control constraint set. For data sets of this kind, a new definition, namely exponential attraction on data sets, is proposed to describe nonlinear dynamical systems under consideration. Based on the data sets and parameterized Lyapunov functions, the problem for exponential attraction on data sets is converted to a pattern classification one. Furthermore, the controller design is proposed accordingly, where the pattern classification function is used to decide which control element in the control set should be employed. Illustrative examples are given to show the effectiveness of the proposed CWP.
In this paper, a higher order finite difference scheme is proposed for Generalized Fractional Diffusion Equations (GFDEs). The fractional diffusion equation is considered in terms of the generalized fractional derivatives (GFDs) which uses the scale and weight functions in the definition. The GFD reduces to the Riemann-Liouville, Caputo derivatives and other fractional derivatives in a particular case. Due to importance of the scale and the weight functions in describing behaviour of real-life physical systems, we present the solutions of the GFDEs by considering various scale and weight functions. The convergence and stability analysis are also discussed for finite difference scheme (FDS) to validate the proposed method. We consider test examples for numerical simulation of FDS to justify the proposed numerical method.
Estimating the conditional quantile of the interested variable with respect to changes in the covariates is frequent in many economical applications as it can offer a comprehensive insight. In this paper, we propose a novel semiparametric model averaging to predict the conditional quantile even if all models under consideration are potentially misspecified. Specifically, we first build a series of non-nested partially linear sub-models, each with different nonlinear component. Then a leave-one-out cross-validation criterion is applied to choose the model weights. Under some regularity conditions, we have proved that the resulting model averaging estimator is asymptotically optimal in terms of minimizing the out-of-sample average quantile prediction error. Our modelling strategy not only effectively avoids the problem of specifying which a covariate should be nonlinear when one fits a partially linear model, but also results in a more accurate prediction than traditional model-based procedures because of the optimality of the selected weights by the cross-validation criterion. Simulation experiments and an illustrative application show that our proposed model averaging method is superior to other commonly used alternatives.
This work explores the physics-driven machine learning technique Operator Inference (OpInf) for predicting the state of chaotic dynamical systems. OpInf provides a non-intrusive approach to infer approximations of polynomial operators in reduced space without having access to the full order operators appearing in discretized models. Datasets for the physics systems are generated using conventional numerical solvers and then projected to a low-dimensional space via Principal Component Analysis (PCA). In latent space, a least-squares problem is set to fit a quadratic polynomial operator which is subsequently employed in a time-integration scheme in order to produce extrapolations in the same space. Once solved, the inverse PCA operation is applied for reconstructing the extrapolations in the original space. The quality of the OpInf predictions is assessed via the Normalized Root Mean Squared Error (NRMSE) metric from which the Valid Prediction Time (VPT) is computed. Numerical experiments considering the chaotic systems Lorenz 96 and the Kuramoto-Sivashinsky equation show promising forecasting capabilities of the OpInf reduced order models with VPT ranges that outperform state-of-the-art machine learning methods such as backpropagation and reservoir computing recurrent neural networks [1], as well as Markov neural operators [2]. The best results based on randomized initial conditions show that Lorenz 96 system can be forecasted up to 6.66 or 3.19 Lyapunov time units corresponding to the forcing terms F=8 and F=10, respectively, while the KS system achieved remarkable 794 Lyapunov time units.
In supervised learning using kernel methods, we often encounter a large-scale finite-sum minimization over a reproducing kernel Hilbert space (RKHS). Large-scale finite-sum problems can be solved using efficient variants of Newton method, where the Hessian is approximated via sub-samples of data. In RKHS, however, the dependence of the penalty function to kernel makes standard sub-sampling approaches inapplicable, since the gram matrix is not readily available in a low-rank form. In this paper, we observe that for this class of problems, one can naturally use kernel approximation to speed up the Newton method. Focusing on randomized features for kernel approximation, we provide a novel second-order algorithm that enjoys local superlinear convergence and global linear convergence (with high probability). We derive the theoretical lower bound for the number of random features required for the approximated Hessian to be close to the true Hessian in the norm sense. Our numerical experiments on real-world data verify the efficiency of our method compared to several benchmarks.
Numerous studies have been devoted to the estimation and inference problems for functional linear models (FLM). However, few works focus on model checking problem that ensures the reliability of results. Limited tests in this area do not have tractable null distributions or asymptotic analysis under alternatives. Also, the functional predictor is usually assumed to be fully observed, which is impractical. To address these problems, we propose an adaptive model checking test for FLM. It combines regular moment-based and conditional moment-based tests, and achieves model adaptivity via the dimension of a residual-based subspace. The advantages of our test are manifold. First, it has a tractable chi-squared null distribution and higher powers under the alternatives than its components. Second, asymptotic properties under different underlying models are developed, including the unvisited local alternatives. Third, the test statistic is constructed upon finite grid points, which incorporates the discrete nature of collected data. We develop the desirable relationship between sample size and number of grid points to maintain the asymptotic properties. Besides, we provide a data-driven approach to estimate the dimension leading to model adaptivity, which is promising in sufficient dimension reduction. We conduct comprehensive numerical experiments to demonstrate the advantages the test inherits from its two simple components.
Let $E$ be a separable Banach space and let $X, X_1,\dots, X_n, \dots$ be i.i.d. Gaussian random variables taking values in $E$ with mean zero and unknown covariance operator $\Sigma: E^{\ast}\mapsto E.$ The complexity of estimation of $\Sigma$ based on observations $X_1,\dots, X_n$ is naturally characterized by the so called effective rank of $\Sigma:$ ${\bf r}(\Sigma):= \frac{{\mathbb E}_{\Sigma}\|X\|^2}{\|\Sigma\|},$ where $\|\Sigma\|$ is the operator norm of $\Sigma.$ Given a smooth real valued functional $f$ defined on the space $L(E^{\ast},E)$ of symmetric linear operators from $E^{\ast}$ into $E$ (equipped with the operator norm), our goal is to study the problem of estimation of $f(\Sigma)$ based on $X_1,\dots, X_n.$ The estimators of $f(\Sigma)$ based on jackknife type bias reduction are considered and the dependence of their Orlicz norm error rates on effective rank ${\bf r}(\Sigma),$ the sample size $n$ and the degree of H\"older smoothness $s$ of functional $f$ are studied. In particular, it is shown that, if ${\bf r}(\Sigma)\lesssim n^{\alpha}$ for some $\alpha\in (0,1)$ and $s\geq \frac{1}{1-\alpha},$ then the classical $\sqrt{n}$-rate is attainable and, if $s> \frac{1}{1-\alpha},$ then asymptotic normality and asymptotic efficiency of the resulting estimators hold. Previously, the results of this type (for different estimators) were obtained only in the case of finite dimensional Euclidean space $E={\mathbb R}^d$ and for covariance operators $\Sigma$ whose spectrum is bounded away from zero (in which case, ${\bf r}(\Sigma)\asymp d$).
Food profiling is an essential step in any food monitoring system needed to prevent health risks and potential frauds in the food industry. Significant improvements in sequencing technologies are pushing food profiling to become the main computational bottleneck. State-of-the-art profilers are unfortunately too costly for food profiling. Our goal is to design a food profiler that solves the main limitations of existing profilers, namely (1) working on massive data structures and (2) incurring considerable data movement, for a real-time monitoring system. To this end, we propose Demeter, the first platform-independent framework for food profiling. Demeter overcomes the first limitation through the use of hyperdimensional computing (HDC) and efficiently performs the accurate few-species classification required in food profiling. We overcome the second limitation by the use of an in-memory hardware accelerator for Demeter (named Acc-Demeter) based on memristor devices. Acc-Demeter actualizes several domain-specific optimizations and exploits the inherent characteristics of memristors to improve the overall performance and energy consumption of Acc-Demeter. We compare Demeter's accuracy with other industrial food profilers using detailed software modeling. We synthesize Acc-Demeter's required hardware using UMC's 65nm library by considering an accurate PCM model based on silicon-based prototypes. Our evaluations demonstrate that Acc-Demeter achieves a (1) throughput improvement of 192x and 724x and (2) memory reduction of 36x and 33x compared to Kraken2 and MetaCache (2 state-of-the-art profilers), respectively, on typical food-related databases. Demeter maintains an acceptable profiling accuracy (within 2% of existing tools) and incurs a very low area overhead.
We present a symbolic-numeric Las Vegas algorithm for factoring Fuchsian ordinary differential operators with rational function coefficients. The new algorithm combines ideas of van Hoeij's "local-to-global" method and of the ''analytic'' approach proposed by van der Hoeven. It essentially reduces to the former in ''easy'' cases where the local-to-global method succeeds, and to an optimized variant of the latter in the "hardest" cases, while handling intermediate cases more efficiently than both.
Low-rank approximation of images via singular value decomposition is well-received in the era of big data. However, singular value decomposition (SVD) is only for order-two data, i.e., matrices. It is necessary to flatten a higher order input into a matrix or break it into a series of order-two slices to tackle higher order data such as multispectral images and videos with the SVD. Higher order singular value decomposition (HOSVD) extends the SVD and can approximate higher order data using sums of a few rank-one components. We consider the problem of generalizing HOSVD over a finite dimensional commutative algebra. This algebra, referred to as a t-algebra, generalizes the field of complex numbers. The elements of the algebra, called t-scalars, are fix-sized arrays of complex numbers. One can generalize matrices and tensors over t-scalars and then extend many canonical matrix and tensor algorithms, including HOSVD, to obtain higher-performance versions. The generalization of HOSVD is called THOSVD. Its performance of approximating multi-way data can be further improved by an alternating algorithm. THOSVD also unifies a wide range of principal component analysis algorithms. To exploit the potential of generalized algorithms using t-scalars for approximating images, we use a pixel neighborhood strategy to convert each pixel to "deeper-order" t-scalar. Experiments on publicly available images show that the generalized algorithm over t-scalars, namely THOSVD, compares favorably with its canonical counterparts.