Quantum relative entropy programs are convex optimization problems which minimize a linear functional over an affine section of the epigraph of the quantum relative entropy function. Recently, the self-concordance of a natural barrier function was proved for this set. This has opened up the opportunity to use interior-point methods for nonsymmetric cone programs to solve these optimization problems. In this paper, we show how common structures arising from applications in quantum information theory can be exploited to improve the efficiency of solving quantum relative entropy programs using interior-point methods. First, we show that the natural barrier function for the epigraph of the quantum relative entropy composed with positive linear operators is optimally self-concordant, even when these linear operators map to singular matrices. Compared to modelling problems using the full quantum relative entropy cone, this allows us to remove redundant log determinant expressions from the barrier function and reduce the overall barrier parameter. Second, we show how certain slices of the quantum relative entropy cone exhibit useful properties which should be exploited whenever possible to perform certain key steps of interior-point methods more efficiently. We demonstrate how these methods can be applied to applications in quantum information theory, including quantifying quantum key rates, quantum rate-distortion functions, quantum channel capacities, and the ground state energy of Hamiltonians. Our numerical results show that these techniques improve computation times by up to several orders of magnitude, and allow previously intractable problems to be solved.
We consider a dynamic mechanism design problem where an auctioneer sells an indivisible good to groups of buyers in every round, for a total of $T$ rounds. The auctioneer aims to maximize their discounted overall revenue while adhering to a fairness constraint that guarantees a minimum average allocation for each group. We begin by studying the static case ($T=1$) and establish that the optimal mechanism involves two types of subsidization: one that increases the overall probability of allocation to all buyers, and another that favors the groups which otherwise have a lower probability of winning the item. We then extend our results to the dynamic case by characterizing a set of recursive functions that determine the optimal allocation and payments in each round. Notably, our results establish that in the dynamic case, the seller, on the one hand, commits to a participation bonus to incentivize truth-telling, and on the other hand, charges an entry fee for every round. Moreover, the optimal allocation once more involves subsidization, which its extent depends on the difference in future utilities for both the seller and buyers when allocating the item to one group versus the others. Finally, we present an approximation scheme to solve the recursive equations and determine an approximately optimal and fair allocation efficiently.
While multimodal foundation models can now natively work with data beyond text, they remain underutilized in analyzing the considerable amounts of multi-dimensional time-series data in fields like healthcare, finance, and social sciences, representing a missed opportunity for richer, data-driven insights. This paper proposes a simple but effective method that leverages the existing vision encoders of these models to "see" time-series data via plots, avoiding the need for additional, potentially costly, model training. Our empirical evaluations show that this approach outperforms providing the raw time-series data as text, with the additional benefit that visual time-series representations demonstrate up to a 90% reduction in model API costs. We validate our hypothesis through synthetic data tasks of increasing complexity, progressing from simple functional form identification on clean data, to extracting trends from noisy scatter plots. To demonstrate generalizability from synthetic tasks with clear reasoning steps to more complex, real-world scenarios, we apply our approach to consumer health tasks - specifically fall detection, activity recognition, and readiness assessment - which involve heterogeneous, noisy data and multi-step reasoning. The overall success in plot performance over text performance (up to an 120% performance increase on zero-shot synthetic tasks, and up to 150% performance increase on real-world tasks), across both GPT and Gemini model families, highlights our approach's potential for making the best use of the native capabilities of foundation models.
By selecting different filter functions, spectral algorithms can generate various regularization methods to solve statistical inverse problems within the learning-from-samples framework. This paper combines distributed spectral algorithms with Sobolev kernels to tackle the functional linear regression problem. The design and mathematical analysis of the algorithms require only that the functional covariates are observed at discrete sample points. Furthermore, the hypothesis function spaces of the algorithms are the Sobolev spaces generated by the Sobolev kernels, optimizing both approximation capability and flexibility. Through the establishment of regularity conditions for the target function and functional covariate, we derive matching upper and lower bounds for the convergence of the distributed spectral algorithms in the Sobolev norm. This demonstrates that the proposed regularity conditions are reasonable and that the convergence analysis under these conditions is tight, capturing the essential characteristics of functional linear regression. The analytical techniques and estimates developed in this paper also enhance existing results in the previous literature.
Causal models seek to unravel the cause-effect relationships among variables from observed data, as opposed to mere mappings among them, as traditional regression models do. This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships. In such scenarios, the causal links represented by directed acyclic graphs (DAGs) can be encapsulated in a structural matrix. The proposed approach leverages the structural matrix's ability to reconstruct data and the statistical properties it imposes on the data to identify the correct structural matrix. This method does not rely on independence tests or graph fitting procedures, making it suitable for scenarios with limited training data. Simulation results demonstrate that the proposed method outperforms the well-known PC, GES, BIC exact search, and LINGAM-based methods in recovering linearly sparse causal structures.
Large Language Models (LLMs) present a dual-use dilemma: they enable beneficial applications while harboring potential for harm, particularly through conversational interactions. Despite various safeguards, advanced LLMs remain vulnerable. A watershed case was Kevin Roose's notable conversation with Bing, which elicited harmful outputs after extended interaction. This contrasts with simpler early jailbreaks that produced similar content more easily, raising the question: How much conversational effort is needed to elicit harmful information from LLMs? We propose two measures: Conversational Length (CL), which quantifies the conversation length used to obtain a specific response, and Conversational Complexity (CC), defined as the Kolmogorov complexity of the user's instruction sequence leading to the response. To address the incomputability of Kolmogorov complexity, we approximate CC using a reference LLM to estimate the compressibility of user instructions. Applying this approach to a large red-teaming dataset, we perform a quantitative analysis examining the statistical distribution of harmful and harmless conversational lengths and complexities. Our empirical findings suggest that this distributional analysis and the minimisation of CC serve as valuable tools for understanding AI safety, offering insights into the accessibility of harmful information. This work establishes a foundation for a new perspective on LLM safety, centered around the algorithmic complexity of pathways to harm.
In the logic programming paradigm, a program is defined by a set of methods, each of which can be executed when specific conditions are met during the current state of an execution. The semantics of these programs can be elegantly represented using sequent calculi, in which each method is linked to an inference rule. In this context, proof search mirrors the program's execution. Previous works introduced a framework in which the process of constructing proof nets is employed to model executions, as opposed to the traditional approach of proof search in sequent calculus. This paper further extends this investigation by focussing on the pure multiplicative fragment of this framework. We demonstrate, providing practical examples, the capability to define logic programming methods with context-sensitive behaviors solely through specific resource-preserving and context-free operations, corresponding to certain generalized multiplicative connectives explored in existing literature. We show how some of these methods, although still multiplicative, escape the purely multiplicative fragment of Linear Logic (MLL).
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.