Potassium disorders are generally asymptomatic, potentially lethal, and common in patients with renal or cardiac disease. The morphology of the electrocardiogram (ECG) signal is very sensitive to the changes in potassium ions, so ECG has a high potential for detecting dyskalemias before laboratory results. In this regard, this paper introduces a new system for ECG-based potassium measurement. The proposed system consists of three main steps. First, cohort selection & data labeling were carried out by using a 5- minute interval between ECGs and potassium measurements and defining three labels: hypokalemia, normal, and hyperkalemia. After that, feature extraction & selection were performed. The extracted features are RR interval, PR interval, QRS duration, QT interval, QTc interval, P axis, QRS axis, T axis, and ACCI. Kruskal-Wallis technique was also used to assess the importance of the features and to select discriminative ones. Finally, an ANFIS model based on FCM clustering (FCM-ANFIS) was designed based on the selected features. The used database is ECG-ViEW II. Results showed that T axis compared with other features has a significant relationship with potassium levels (P<0.01, r=0.62). The absolute error of FCM-ANFIS is 0.4+-0.3 mM, its mean absolute percentage error (MAPE) is 9.99%, and its r-squared value is 0.74. Its classification accuracy is 85.71%. In detecting hypokalemia and hyperkalemia, the sensitivities are 60% and 80%, respectively, and the specificities are 100% and 97.3%, respectively. This research has shed light on the design of noninvasive instruments to measure potassium concentration and to detect dyskalemias, thereby reducing cardiac events.
Detection of Volatile Organic Compounds (VOCs) from the breath is becoming a viable route for the early detection of diseases non-invasively. This paper presents a sensor array with three metal oxide electrodes that can use machine learning methods to identify four distinct VOCs in a mixture. The metal oxide sensor array was subjected to various VOC concentrations, including ethanol, acetone, toluene and chloroform. The dataset obtained from individual gases and their mixtures were analyzed using multiple machine learning algorithms, such as Random Forest (RF), K-Nearest Neighbor (KNN), Decision Tree, Linear Regression, Logistic Regression, Naive Bayes, Linear Discriminant Analysis, Artificial Neural Network, and Support Vector Machine. KNN and RF have shown more than 99% accuracy in classifying different varying chemicals in the gas mixtures. In regression analysis, KNN has delivered the best results with R2 value of more than 0.99 and LOD of 0.012, 0.015, 0.014 and 0.025 PPM for predicting the concentrations of varying chemicals Acetone, Toluene, Ethanol, and Chloroform, respectively in complex mixtures. Therefore, it is demonstrated that the array utilizing the provided algorithms can classify and predict the concentrations of the four gases simultaneously for disease diagnosis and treatment monitoring.
As 6G emerges, cellular systems are envisioned to integrate sensing with communication capabilities, leading to multi-faceted communication and sensing (JCAS). This paper presents a comprehensive cross-layer overview of the Hexa-X-II project's endeavors in JCAS, aligning 6G use cases with service requirements and pinpointing distinct scenarios that bridge communication and sensing. This work relates to these scenarios through the lens of the cross-layer physical and networking domains, covering models, deployments, resource allocation, storage challenges, computational constraints, interfaces, and innovative functions.
Identifying causal structure is central to many fields ranging from strategic decision-making to biology and economics. In this work, we propose CD-UCT, a model-based reinforcement learning method for causal discovery based on tree search that builds directed acyclic graphs incrementally. We also formalize and prove the correctness of an efficient algorithm for excluding edges that would introduce cycles, which enables deeper discrete search and sampling in DAG space. The proposed method can be applied broadly to causal Bayesian networks with both discrete and continuous random variables. We conduct a comprehensive evaluation on synthetic and real-world datasets, showing that CD-UCT substantially outperforms the state-of-the-art model-free reinforcement learning technique and greedy search, constituting a promising advancement for combinatorial methods.
In pediatric cardiology, the accurate and immediate assessment of cardiac function through echocardiography is important since it can determine whether urgent intervention is required in many emergencies. However, echocardiography is characterized by ambiguity and heavy background noise interference, bringing more difficulty to accurate segmentation. Present methods lack efficiency and are also prone to mistakenly segmenting some background noise areas as the left ventricular area due to noise disturbance. To relieve the two issues, we introduce P-Mamba for efficient pediatric echocardiographic left ventricular segmentation. Specifically, we turn to the recently proposed vision mamba layers in our vision mamba encoder branch to improve the computing and memory efficiency of our model while modeling global dependencies. In the other DWT-based PMD encoder branch, we devise DWT-based Perona-Malik Diffusion (PMD) Blocks that utilize PMD for noise suppression, while simultaneously preserving the local shape cues of the left ventricle. Leveraging the strengths of both the two encoder branches, P-Mamba achieves superior accuracy and efficiency to established models, such as vision transformers with quadratic and linear computational complexity. This innovative approach promises significant advancements in pediatric cardiac imaging and beyond.
The detection of heterogeneous mental disorders based on brain readouts remains challenging due to the complexity of symptoms and the absence of reliable biomarkers. This paper introduces CAM (Cortical Anomaly Detection through Masked Image Modeling), a novel self-supervised framework designed for the unsupervised detection of complex brain disorders using cortical surface features. We employ this framework for the detection of individuals on the psychotic spectrum and demonstrate its capabilities compared to state-of-the-art methods, achieving an AUC of 0.696 for Schizoaffective and 0.769 for Schizophreniform, without the need for any labels. Furthermore, the analysis of atypical cortical regions, including Pars Triangularis and several frontal areas often implicated in schizophrenia, provides further confidence in our approach. Altogether, we demonstrate a scalable approach for anomaly detection of complex brain disorders based on cortical abnormalities. The code will be made available at //github.com/chadHGY/CAM.
In the clinical treatment of mood disorders, the complex behavioral symptoms presented by patients and variability of patient response to particular medication classes can create difficulties in providing fast and reliable treatment when standard diagnostic and prescription methods are used. Increasingly, the incorporation of physiological information such as neuroimaging scans and derivatives into the clinical process promises to alleviate some of the uncertainty surrounding this process. Particularly, if neural features can help to identify patients who may not respond to standard courses of anti-depressants or mood stabilizers, clinicians may elect to avoid lengthy and side-effect-laden treatments and seek out a different, more effective course that might otherwise not have been under consideration. Previously, approaches for the derivation of relevant neuroimaging features work at only one scale in the data, potentially limiting the depth of information available for clinical decision support. In this work, we show that the utilization of multi spatial scale neuroimaging features - particularly resting state functional networks and functional network connectivity measures - provide a rich and robust basis for the identification of relevant medication class and non-responders in the treatment of mood disorders. We demonstrate that the generated features, along with a novel approach for fast and automated feature selection, can support high accuracy rates in the identification of medication class and non-responders as well as the identification of novel, multi-scale biomarkers.
Segmentations are crucial in medical imaging to obtain morphological, volumetric, and radiomics biomarkers. Manual segmentation is accurate but not feasible in the radiologist's clinical workflow, while automatic segmentation generally obtains sub-par performance. We therefore developed a minimally interactive deep learning-based segmentation method for soft-tissue tumors (STTs) on CT and MRI. The method requires the user to click six points near the tumor's extreme boundaries. These six points are transformed into a distance map and serve, with the image, as input for a Convolutional Neural Network. For training and validation, a multicenter dataset containing 514 patients and nine STT types in seven anatomical locations was used, resulting in a Dice Similarity Coefficient (DSC) of 0.85$\pm$0.11 (mean $\pm$ standard deviation (SD)) for CT and 0.84$\pm$0.12 for T1-weighted MRI, when compared to manual segmentations made by expert radiologists. Next, the method was externally validated on a dataset including five unseen STT phenotypes in extremities, achieving 0.81$\pm$0.08 for CT, 0.84$\pm$0.09 for T1-weighted MRI, and 0.88\pm0.08 for previously unseen T2-weighted fat-saturated (FS) MRI. In conclusion, our minimally interactive segmentation method effectively segments different types of STTs on CT and MRI, with robust generalization to previously unseen phenotypes and imaging modalities.
In machine learning and neural network optimization, algorithms like incremental gradient, and shuffle SGD are popular due to minimizing the number of cache misses and good practical convergence behavior. However, their optimization properties in theory, especially for non-convex smooth functions, remain incompletely explored. This paper delves into the convergence properties of SGD algorithms with arbitrary data ordering, within a broad framework for non-convex smooth functions. Our findings show enhanced convergence guarantees for incremental gradient and single shuffle SGD. Particularly if $n$ is the training set size, we improve $n$ times the optimization term of convergence guarantee to reach accuracy $\varepsilon$ from $O(n / \varepsilon)$ to $O(1 / \varepsilon)$.
Identification of optimal dose combinations in early phase dose-finding trials is challenging, due to the trade-off between precisely estimating the many parameters required to flexibly model the possibly non-monotonic dose-response surface, and the small sample sizes in early phase trials. This difficulty is even more pertinent in the context of personalized dose-finding, where patient characteristics are used to identify tailored optimal dose combinations. To overcome these challenges, we propose the use of Bayesian optimization for finding optimal dose combinations in standard ("one size fits all") and personalized multi-agent dose-finding trials. Bayesian optimization is a method for estimating the global optima of expensive-to-evaluate objective functions. The objective function is approximated by a surrogate model, commonly a Gaussian process, paired with a sequential design strategy to select the next point via an acquisition function. This work is motivated by an industry-sponsored problem, where focus is on optimizing a dual-agent therapy in a setting featuring minimal toxicity. To compare the performance of the standard and personalized methods under this setting, simulation studies are performed for a variety of scenarios. Our study concludes that taking a personalized approach is highly beneficial in the presence of heterogeneity.
Computer vision models have been known to encode harmful biases, leading to the potentially unfair treatment of historically marginalized groups, such as people of color. However, there remains a lack of datasets balanced along demographic traits that can be used to evaluate the downstream fairness of these models. In this work, we demonstrate that diffusion models can be leveraged to create such a dataset. We first use a diffusion model to generate a large set of images depicting various occupations. Subsequently, each image is edited using inpainting to generate multiple variants, where each variant refers to a different perceived race. Using this dataset, we benchmark several vision-language models on a multi-class occupation classification task. We find that images generated with non-Caucasian labels have a significantly higher occupation misclassification rate than images generated with Caucasian labels, and that several misclassifications are suggestive of racial biases. We measure a model's downstream fairness by computing the standard deviation in the probability of predicting the true occupation label across the different perceived identity groups. Using this fairness metric, we find significant disparities between the evaluated vision-and-language models. We hope that our work demonstrates the potential value of diffusion methods for fairness evaluations.