Event-based cameras offer reliable measurements for preforming computer vision tasks in high-dynamic range environments and during fast motion maneuvers. However, adopting deep learning in event-based vision faces the challenge of annotated data scarcity due to recency of event cameras. Transferring the knowledge that can be obtained from conventional camera annotated data offers a practical solution to this challenge. We develop an unsupervised domain adaptation algorithm for training a deep network for event-based data image classification using contrastive learning and uncorrelated conditioning of data. Our solution outperforms the existing algorithms for this purpose.
Deep Learning based diagnostics systems can provide accurate and robust quantitative analysis in digital pathology. These algorithms require large amounts of annotated training data which is impractical in pathology due to the high resolution of histopathological images. Hence, self-supervised methods have been proposed to learn features using ad-hoc pretext tasks. The self-supervised training process is time consuming and often leads to subpar feature representation due to a lack of constrain on the learnt feature space, particularly prominent under data imbalance. In this work, we propose to actively sample the training set using a handful of labels and a small proxy network, decreasing sample requirement by 93% and training time by 62%.
Generally, image-to-image translation (i2i) methods aim at learning mappings across domains with the assumption that the images used for translation share content (e.g., pose) but have their own domain-specific information (a.k.a. style). Conditioned on a target image, such methods extract the target style and combine it with the source image content, keeping coherence between the domains. In our proposal, we depart from this traditional view and instead consider the scenario where the target domain is represented by a very low-resolution (LR) image, proposing a domain-agnostic i2i method for fine-grained problems, where the domains are related. More specifically, our domain-agnostic approach aims at generating an image that combines visual features from the source image with low-frequency information (e.g. pose, color) of the LR target image. To do so, we present a novel approach that relies on training the generative model to produce images that both share distinctive information of the associated source image and correctly match the LR target image when downscaled. We validate our method on the CelebA-HQ and AFHQ datasets by demonstrating improvements in terms of visual quality. Qualitative and quantitative results show that when dealing with intra-domain image translation, our method generates realistic samples compared to state-of-the-art methods such as StarGAN v2. Ablation studies also reveal that our method is robust to changes in color, it can be applied to out-of-distribution images, and it allows for manual control over the final results.
The ability to specify robot commands by a non-expert user is critical for building generalist agents capable of solving a large variety of tasks. One convenient way to specify the intended robot goal is by a video of a person demonstrating the target task. While prior work typically aims to imitate human demonstrations performed in robot environments, here we focus on a more realistic and challenging setup with demonstrations recorded in natural and diverse human environments. We propose Video-conditioned Policy learning (ViP), a data-driven approach that maps human demonstrations of previously unseen tasks to robot manipulation skills. To this end, we learn our policy to generate appropriate actions given current scene observations and a video of the target task. To encourage generalization to new tasks, we avoid particular tasks during training and learn our policy from unlabelled robot trajectories and corresponding robot videos. Both robot and human videos in our framework are represented by video embeddings pre-trained for human action recognition. At test time we first translate human videos to robot videos in the common video embedding space, and then use resulting embeddings to condition our policies. Notably, our approach enables robot control by human demonstrations in a zero-shot manner, i.e., without using robot trajectories paired with human instructions during training. We validate our approach on a set of challenging multi-task robot manipulation environments and outperform state of the art. Our method also demonstrates excellent performance in a new challenging zero-shot setup where no paired data is used during training.
ROI extraction is an active but challenging task in remote sensing because of the complicated landform, the complex boundaries and the requirement of annotations. Weakly supervised learning (WSL) aims at learning a mapping from input image to pixel-wise prediction under image-wise labels, which can dramatically decrease the labor cost. However, due to the imprecision of labels, the accuracy and time consumption of WSL methods are relatively unsatisfactory. In this paper, we propose a two-step ROI extraction based on contractive learning. Firstly, we present to integrate multiscale Grad-CAM to obtain pseudo pixelwise annotations with well boundaries. Then, to reduce the compact of misjudgments in pseudo annotations, we construct a contrastive learning strategy to encourage the features inside ROI as close as possible and separate background features from foreground features. Comprehensive experiments demonstrate the superiority of our proposal. Code is available at //github.com/HE-Lingfeng/ROI-Extraction
In partial multi-label learning (PML), each data example is equipped with a candidate label set, which consists of multiple ground-truth labels and other false-positive labels. Recently, graph-based methods, which demonstrate a good ability to estimate accurate confidence scores from candidate labels, have been prevalent to deal with PML problems. However, we observe that existing graph-based PML methods typically adopt linear multi-label classifiers and thus fail to achieve superior performance. In this work, we attempt to remove several obstacles for extending them to deep models and propose a novel deep Partial multi-Label model with grAph-disambIguatioN (PLAIN). Specifically, we introduce the instance-level and label-level similarities to recover label confidences as well as exploit label dependencies. At each training epoch, labels are propagated on the instance and label graphs to produce relatively accurate pseudo-labels; then, we train the deep model to fit the numerical labels. Moreover, we provide a careful analysis of the risk functions to guarantee the robustness of the proposed model. Extensive experiments on various synthetic datasets and three real-world PML datasets demonstrate that PLAIN achieves significantly superior results to state-of-the-art methods.
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.
A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.
Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.
Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.