亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give the first numerical calculation of the spectrum of the Laplacian acting on bundle-valued forms on a Calabi-Yau three-fold. Specifically, we show how to compute the approximate eigenvalues and eigenmodes of the Dolbeault Laplacian acting on bundle-valued $(p,q)$-forms on K\"ahler manifolds. We restrict our attention to line bundles over complex projective space and Calabi-Yau hypersurfaces therein. We give three examples. For two of these, $\mathbb{P}^3$ and a Calabi-Yau one-fold (a torus), we compare our numerics with exact results available in the literature and find complete agreement. For the third example, the Fermat quintic three-fold, there are no known analytic results, so our numerical calculations are the first of their kind. The resulting spectra pass a number of non-trivial checks that arise from Serre duality and the Hodge decomposition. The outputs of our algorithm include all the ingredients one needs to compute physical Yukawa couplings in string compactifications.

相關內容

Though a core element of the digital age, numerical difference algorithms struggle with noise susceptibility. This stems from a key disconnect between the infinitesimal quantities in continuous differentiation and the finite intervals in its discrete counterpart. This disconnect violates the fundamental definition of differentiation (Leibniz and Cauchy). To bridge this gap, we build a novel general difference (Tao General Difference, TGD). Departing from derivative-by-integration, TGD generalizes differentiation to finite intervals in continuous domains through three key constraints. This allows us to calculate the general difference of a sequence in discrete domain via the continuous step function constructed from the sequence. Two construction methods, the rotational construction and the orthogonal construction, are proposed to construct the operators of TGD. The construction TGD operators take same convolution mode in calculation for continuous functions, discrete sequences, and arrays across any dimension. Our analysis with example operations showcases TGD's capability in both continuous and discrete domains, paving the way for accurate and noise-resistant differentiation in the digital era.

In black-box optimization, noise in the objective function is inevitable. Noise disrupts the ranking of candidate solutions in comparison-based optimization, possibly deteriorating the search performance compared with a noiseless scenario. Explicit averaging takes the sample average of noisy objective function values and is widely used as a simple and versatile noise-handling technique. Although it is suitable for various applications, it is ineffective if the mean is not finite. We theoretically reveal that explicit averaging has a negative effect on the estimation of ground-truth rankings when assuming stably distributed noise without a finite mean. Alternatively, sign averaging is proposed as a simple but robust noise-handling technique. We theoretically prove that the sign averaging estimates the order of the medians of the noisy objective function values of a pair of points with arbitrarily high probability as the number of samples increases. Its advantages over explicit averaging and its robustness are also confirmed through numerical experiments.

In this note we consider the approximation of the Greeks Delta and Gamma of American-style options through the numerical solution of time-dependent partial differential complementarity problems (PDCPs). This approach is very attractive as it can yield accurate approximations to these Greeks at essentially no additional computational cost during the numerical solution of the PDCP for the pertinent option value function. For the temporal discretization, the Crank-Nicolson method is arguably the most popular method in computational finance. It is well-known, however, that this method can have an undesirable convergence behaviour in the approximation of the Greeks Delta and Gamma for American-style options, even when backward Euler damping (Rannacher smoothing) is employed. In this note we study for the temporal discretization an interesting family of diagonally implicit Runge-Kutta (DIRK) methods together with the two-stage Lobatto IIIC method. Through ample numerical experiments for one- and two-asset American-style options, it is shown that these methods can yield a regular second-order convergence behaviour for the option value as well as for the Greeks Delta and Gamma. A mutual comparison reveals that the DIRK method with suitably chosen parameter $\theta$ is preferable.

Background and purpose: The unanticipated detection by magnetic resonance imaging (MRI) in the brain of asymptomatic subjects of white matter lesions suggestive of multiple sclerosis (MS) has been named radiologically isolated syndrome (RIS). As the difference between early MS [i.e. clinically isolated syndrome (CIS)] and RIS is the occurrence of a clinical event, it is logical to improve detection of the subclinical form without interfering with MRI as there are radiological diagnostic criteria for that. Our objective was to use machine-learning classification methods to identify morphometric measures that help to discriminate patients with RIS from those with CIS. Methods: We used a multimodal 3-T MRI approach by combining MRI biomarkers (cortical thickness, cortical and subcortical grey matter volume, and white matter integrity) of a cohort of 17 patients with RIS and 17 patients with CIS for single-subject level classification. Results: The best proposed models to predict the diagnosis of CIS and RIS were based on the Naive Bayes, Bagging and Multilayer Perceptron classifiers using only three features: the left rostral middle frontal gyrus volume and the fractional anisotropy values in the right amygdala and right lingual gyrus. The Naive Bayes obtained the highest accuracy [overall classification, 0.765; area under the receiver operating characteristic (AUROC), 0.782]. Conclusions: A machine-learning approach applied to multimodal MRI data may differentiate between the earliest clinical expressions of MS (CIS and RIS) with an accuracy of 78%. Keywords: Bagging; Multilayer Perceptron; Naive Bayes classifier; clinically isolated syndrome; diffusion tensor imaging; machine-learning; magnetic resonance imaging; multiple sclerosis; radiologically isolated syndrome.

We propose an energy-stable parametric finite element method (PFEM) for the planar Willmore flow and establish its unconditional energy stability of the full discretization scheme. The key lies in the introduction of two novel geometric identities to describe the planar Willmore flow: the first one involves the coupling of the outward unit normal vector $\boldsymbol{n}$ and the normal velocity $V$, and the second one concerns the time derivative of the mean curvature $\kappa$. Based on them, we derive a set of new geometric partial differential equations for the planar Willmore flow, leading to our new fully-discretized and unconditionally energy-stable PFEM. Our stability analysis is also based on the two new geometric identities. Extensive numerical experiments are provided to illustrate its efficiency and validate its unconditional energy stability.

The Skolem problem is a long-standing open problem in linear dynamical systems: can a linear recurrence sequence (LRS) ever reach 0 from a given initial configuration? Similarly, the positivity problem asks whether the LRS stays positive from an initial configuration. Deciding Skolem (or positivity) has been open for half a century: the best known decidability results are for LRS with special properties (e.g., low order recurrences). But these problems are easier for "uninitialized" variants, where the initial configuration is not fixed but can vary arbitrarily: checking if there is an initial configuration from which the LRS stays positive can be decided in polynomial time (Tiwari in 2004, Braverman in 2006). In this paper, we consider problems that lie between the initialized and uninitialized variant. More precisely, we ask if 0 (resp. negative numbers) can be avoided from every initial configuration in a neighborhood of a given initial configuration. This can be considered as a robust variant of the Skolem (resp. positivity) problem. We show that these problems lie at the frontier of decidability: if the neighbourhood is given as part of the input, then robust Skolem and robust positivity are Diophantine hard, i.e., solving either would entail major breakthrough in Diophantine approximations, as happens for (non-robust) positivity. However, if one asks whether such a neighbourhood exists, then the problems turn out to be decidable with PSPACE complexity. Our techniques also allow us to tackle robustness for ultimate positivity, which asks whether there is a bound on the number of steps after which the LRS remains positive. There are two variants depending on whether we ask for a "uniform" bound on this number of steps. For the non-uniform variant, when the neighbourhood is open, the problem turns out to be tractable, even when the neighbourhood is given as input.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司