亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose an energy-stable parametric finite element method (PFEM) for the planar Willmore flow and establish its unconditional energy stability of the full discretization scheme. The key lies in the introduction of two novel geometric identities to describe the planar Willmore flow: the first one involves the coupling of the outward unit normal vector $\boldsymbol{n}$ and the normal velocity $V$, and the second one concerns the time derivative of the mean curvature $\kappa$. Based on them, we derive a set of new geometric partial differential equations for the planar Willmore flow, leading to our new fully-discretized and unconditionally energy-stable PFEM. Our stability analysis is also based on the two new geometric identities. Extensive numerical experiments are provided to illustrate its efficiency and validate its unconditional energy stability.

相關內容

We propose a numerical method to solve parameter-dependent hyperbolic partial differential equations (PDEs) with a moment approach, based on a previous work from Marx et al. (2020). This approach relies on a very weak notion of solution of nonlinear equations, namely parametric entropy measure-valued (MV) solutions, satisfying linear equations in the space of Borel measures. The infinite-dimensional linear problem is approximated by a hierarchy of convex, finite-dimensional, semidefinite programming problems, called Lasserre's hierarchy. This gives us a sequence of approximations of the moments of the occupation measure associated with the parametric entropy MV solution, which is proved to converge. In the end, several post-treatments can be performed from this approximate moments sequence. In particular, the graph of the solution can be reconstructed from an optimization of the Christoffel-Darboux kernel associated with the approximate measure, that is a powerful approximation tool able to capture a large class of irregular functions. Also, for uncertainty quantification problems, several quantities of interest can be estimated, sometimes directly such as the expectation of smooth functionals of the solutions. The performance of our approach is evaluated through numerical experiments on the inviscid Burgers equation with parametrised initial conditions or parametrised flux function.

The identification of materials with exceptional properties is an essential objective to enable technological progress. We propose the application of \textit{Quality-Diversity} algorithms to the field of crystal structure prediction. The objective of these algorithms is to identify a diverse set of high-performing solutions, which has been successful in a range of fields such as robotics, architecture and aeronautical engineering. As these methods rely on a high number of evaluations, we employ machine-learning surrogate models to compute the interatomic potential and material properties that are used to guide optimisation. Consequently, we also show the value of using neural networks to model crystal properties and enable the identification of novel composition--structure combinations. In this work, we specifically study the application of the MAP-Elites algorithm to predict polymorphs of TiO$_2$. We rediscover the known ground state, in addition to a set of other polymorphs with distinct properties. We validate our method for C, SiO$_2$ and SiC systems, where we show that the algorithm can uncover multiple local minima with distinct electronic and mechanical properties.

It is well known that Newton's method, especially when applied to large problems such as the discretization of nonlinear partial differential equations (PDEs), can have trouble converging if the initial guess is too far from the solution. This work focuses on accelerating this convergence, in the context of the discretization of nonlinear elliptic PDEs. We first provide a quick review of existing methods, and justify our choice of learning an initial guess with a Fourier neural operator (FNO). This choice was motivated by the mesh-independence of such operators, whose training and evaluation can be performed on grids with different resolutions. The FNO is trained using a loss minimization over generated data, loss functions based on the PDE discretization. Numerical results, in one and two dimensions, show that the proposed initial guess accelerates the convergence of Newton's method by a large margin compared to a naive initial guess, especially for highly nonlinear or anisotropic problems.

Deep learning methods have access to be employed for solving physical systems governed by parametric partial differential equations (PDEs) due to massive scientific data. It has been refined to operator learning that focuses on learning non-linear mapping between infinite-dimensional function spaces, offering interface from observations to solutions. However, state-of-the-art neural operators are limited to constant and uniform discretization, thereby leading to deficiency in generalization on arbitrary discretization schemes for computational domain. In this work, we propose a novel operator learning algorithm, referred to as Dynamic Gaussian Graph Operator (DGGO) that expands neural operators to learning parametric PDEs in arbitrary discrete mechanics problems. The Dynamic Gaussian Graph (DGG) kernel learns to map the observation vectors defined in general Euclidean space to metric vectors defined in high-dimensional uniform metric space. The DGG integral kernel is parameterized by Gaussian kernel weighted Riemann sum approximating and using dynamic message passing graph to depict the interrelation within the integral term. Fourier Neural Operator is selected to localize the metric vectors on spatial and frequency domains. Metric vectors are regarded as located on latent uniform domain, wherein spatial and spectral transformation offer highly regular constraints on solution space. The efficiency and robustness of DGGO are validated by applying it to solve numerical arbitrary discrete mechanics problems in comparison with mainstream neural operators. Ablation experiments are implemented to demonstrate the effectiveness of spatial transformation in the DGG kernel. The proposed method is utilized to forecast stress field of hyper-elastic material with geometrically variable void as engineering application.

The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.

We prove non-asymptotic error bounds for particle gradient descent (PGD)~(Kuntz et al., 2023), a recently introduced algorithm for maximum likelihood estimation of large latent variable models obtained by discretizing a gradient flow of the free energy. We begin by showing that, for models satisfying a condition generalizing both the log-Sobolev and the Polyak--{\L}ojasiewicz inequalities (LSI and P{\L}I, respectively), the flow converges exponentially fast to the set of minimizers of the free energy. We achieve this by extending a result well-known in the optimal transport literature (that the LSI implies the Talagrand inequality) and its counterpart in the optimization literature (that the P{\L}I implies the so-called quadratic growth condition), and applying it to our new setting. We also generalize the Bakry--\'Emery Theorem and show that the LSI/P{\L}I generalization holds for models with strongly concave log-likelihoods. For such models, we further control PGD's discretization error, obtaining non-asymptotic error bounds. While we are motivated by the study of PGD, we believe that the inequalities and results we extend may be of independent interest.

Classical tests are available for the two-sample test of correspondence of distribution functions. From these, the Kolmogorov-Smirnov test provides also the graphical interpretation of the test results, in different forms. Here, we propose modifications of the Kolmogorov-Smirnov test with higher power. The proposed tests are based on the so-called global envelope test which allows for graphical interpretation, similarly as the Kolmogorov-Smirnov test. The tests are based on rank statistics and are suitable also for the comparison of $n$ samples, with $n \geq 2$. We compare the alternatives for the two-sample case through an extensive simulation study and discuss their interpretation. Finally, we apply the tests to real data. Specifically, we compare the height distributions between boys and girls at different ages, as well as sepal length distributions of different flower species using the proposed methodologies.

The main respiratory muscle, the diaphragm, is an example of a thin structure. We aim to perform detailed numerical simulations of the muscle mechanics based on individual patient data. This requires a representation of the diaphragm geometry extracted from medical image data. We design an adaptive reconstruction method based on a least-squares radial basis function partition of unity method. The method is adapted to thin structures by subdividing the structure rather than the surrounding space, and by introducing an anisotropic scaling of local subproblems. The resulting representation is an infinitely smooth level set function, which is stabilized such that there are no spurious zero level sets. We show reconstruction results for 2D cross sections of the diaphragm geometry as well as for the full 3D geometry. We also show solutions to basic PDE test problems in the reconstructed geometries.

We establish a theoretical framework of the particle relaxation method for uniform particle generation of Smoothed Particle Hydrodynamics. We achieve this by reformulating the particle relaxation as an optimization problem. The objective function is an integral difference between discrete particle-based and smoothed-analytical volume fractions. The analysis demonstrates that the particle relaxation method in the domain interior is essentially equivalent to employing a gradient descent approach to solve this optimization problem, and we can extend such an equivalence to the bounded domain by introducing a proper boundary term. Additionally, each periodic particle distribution has a spatially uniform particle volume, denoted as characteristic volume. The relaxed particle distribution has the largest characteristic volume, and the kernel cut-off radius determines this volume. This insight enables us to control the relaxed particle distribution by selecting the target kernel cut-off radius for a given kernel function.

The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle point formulation is well established since many decades. This topic was mostly studied for variational formulations defined upon the same product spaces of both shape- and test-pairs of primal variable-multiplier. Whenever either these spaces or the two bilinear forms involving the multiplier are distinct, the saddle point problem is asymmetric. The three inf-sup conditions to be satisfied by the product spaces stipulated in work on the subject, in order to guarantee well-posedness, are well known. However, the material encountered in the literature addressing the approximation of this class of problems left room for improvement and clarifications. After making a brief review of the existing contributions to the topic that justifies such an assertion, in this paper we set up finer global error bounds for the pair primal variable-multiplier solving an asymmetric saddle point problem. Besides well-posedness, the three constants in the aforementioned inf-sup conditions are identified as all that is needed for determining the stability constant appearing therein, whose expression is exhibited. As a complement, refined error bounds depending only on these three constants are given for both unknowns separately.

北京阿比特科技有限公司