Fluid flow problems with high Reynolds number show spurious oscillations in their solution when solved using standard Galerkin finite element methods. These Oscillations can be eradicated using various stabilisation techniques. In this article, we use a local projection stabilisation for a Hybrid High-Order approximation of the Oseen problem. We prove an existence-uniqueness result under a SUPG-like norm. We derive an optimal order error estimate under this norm for equal order polynomial discretisation of velocity and pressure spaces.
Generative Adversarial Networks (GANs) have shown remarkable performance in image generation. However, GAN training suffers from the problem of instability. One of the main approaches to address this problem is to modify the loss function, often using regularization terms in addition to changing the type of adversarial losses. This paper focuses on directly regularizing the adversarial loss function. We propose a method that applies flooding, an overfitting suppression method in supervised learning, to GANs to directly prevent the discriminator's loss from becoming excessively low. Flooding requires tuning the flood level, but when applied to GANs, we propose that the appropriate range of flood level settings is determined by the adversarial loss function, supported by theoretical analysis of GANs using the binary cross entropy loss. We experimentally verify that flooding stabilizes GAN training and can be combined with other stabilization techniques. We also show that by restricting the discriminator's loss to be no less than the flood level, the training proceeds stably even when the flood level is somewhat high.
Recent advances in the development of pre-trained Spanish language models has led to significant progress in many Natural Language Processing (NLP) tasks, such as question answering. However, the lack of efficient models imposes a barrier for the adoption of such models in resource-constrained environments. Therefore, smaller distilled models for the Spanish language could be proven to be highly scalable and facilitate their further adoption on a variety of tasks and scenarios. In this work, we take one step in this direction by developing SpanishTinyRoBERTa, a compressed language model based on RoBERTa for efficient question answering in Spanish. To achieve this, we employ knowledge distillation from a large model onto a lighter model that allows for a wider implementation, even in areas with limited computational resources, whilst attaining negligible performance sacrifice. Our experiments show that the dense distilled model can still preserve the performance of its larger counterpart, while significantly increasing inference speedup. This work serves as a starting point for further research and investigation of model compression efforts for Spanish language models across various NLP tasks.
The CODECO Experimentation Framework is an open-source solution designed for the rapid experimentation of Kubernetes-based edge cloud deployments. It adopts a microservice-based architecture and introduces innovative abstractions for (i) the holistic deployment of Kubernetes clusters and associated applications, starting from the VM allocation level; (ii) declarative cross-layer experiment configuration; and (iii) automation features covering the entire experimental process, from the configuration up to the results visualization. We present proof-of-concept results that demonstrate the above capabilities in three distinct contexts: (i) a comparative evaluation of various network fabrics across different edge-oriented Kubernetes distributions; (ii) the automated deployment of EdgeNet, which is a complex edge cloud orchestration system; and (iii) an assessment of anomaly detection (AD) workflows tailored for edge environments.
This paper proposes novel inferential procedures for discovering the network Granger causality in high-dimensional vector autoregressive models. In particular, we mainly offer two multiple testing procedures designed to control the false discovery rate (FDR). The first procedure is based on the limiting normal distribution of the $t$-statistics with the debiased lasso estimator. The second procedure is its bootstrap version. We also provide a robustification of the first procedure against any cross-sectional dependence using asymptotic e-variables. Their theoretical properties, including FDR control and power guarantee, are investigated. The finite sample evidence suggests that both procedures can successfully control the FDR while maintaining high power. Finally, the proposed methods are applied to discovering the network Granger causality in a large number of macroeconomic variables and regional house prices in the UK.
The 2020 Census Disclosure Avoidance System (DAS) is a formally private mechanism that first adds independent noise to cross tabulations for a set of pre-specified hierarchical geographic units, which is known as the geographic spine. After post-processing these noisy measurements, DAS outputs a formally private database with fields indicating location in the standard census geographic spine, which is defined by the United States as a whole, states, counties, census tracts, block groups, and census blocks. This paper describes how the geographic spine used internally within DAS to define the initial noisy measurements impacts accuracy of the output database. Specifically, tabulations for geographic areas tend to be most accurate for geographic areas that both 1) can be derived by aggregating together geographic units above the block geographic level of the internal spine, and 2) are closer to the geographic units of the internal spine. After describing the accuracy tradeoffs relevant to the choice of internal DAS geographic spine, we provide the settings used to define the 2020 Census production DAS runs.
We propose the first loss function for approximate Nash equilibria of normal-form games that is amenable to unbiased Monte Carlo estimation. This construction allows us to deploy standard non-convex stochastic optimization techniques for approximating Nash equilibria, resulting in novel algorithms with provable guarantees. We complement our theoretical analysis with experiments demonstrating that stochastic gradient descent can outperform previous state-of-the-art approaches.
Model selection aims to find the best model in terms of accuracy, interpretability or simplicity, preferably all at once. In this work, we focus on evaluating model performance of Gaussian process models, i.e. finding a metric that provides the best trade-off between all those criteria. While previous work considers metrics like the likelihood, AIC or dynamic nested sampling, they either lack performance or have significant runtime issues, which severely limits applicability. We address these challenges by introducing multiple metrics based on the Laplace approximation, where we overcome a severe inconsistency occuring during naive application of the Laplace approximation. Experiments show that our metrics are comparable in quality to the gold standard dynamic nested sampling without compromising for computational speed. Our model selection criteria allow significantly faster and high quality model selection of Gaussian process models.
Training large deep learning models requires parallelization techniques to scale. In existing methods such as Data Parallelism or ZeRO-DP, micro-batches of data are processed in parallel, which creates two drawbacks: the total memory required to store the model's activations peaks at the end of the forward pass, and gradients must be simultaneously averaged at the end of the backpropagation step. We propose Cyclic Data Parallelism, a novel paradigm shifting the execution of the micro-batches from simultaneous to sequential, with a uniform delay. At the cost of a slight gradient delay, the total memory taken by activations is constant, and the gradient communications are balanced during the training step. With Model Parallelism, our technique reduces the number of GPUs needed, by sharing GPUs across micro-batches. Within the ZeRO-DP framework, our technique allows communication of the model states with point-to-point operations rather than a collective broadcast operation. We illustrate the strength of our approach on the CIFAR-10 and ImageNet datasets.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.