We study the problem of recovering an atomic measure on the unit 2-sphere $\mathbb{S}^2$ given finitely many moments with respect to spherical harmonics. The analysis relies on the formulation of this problem as an optimization problem on the space of bounded Borel measures on $\mathbb{S}^2$ as it was considered by Y. de Castro & F. Gamboa and E. Cand\'es & C. Fernandez-Granda. We construct a dual certificate using a kernel given in an explicit form and make a concrete analysis of the interpolation problem. Numerical examples are provided and analyzed.
This article considers the popular MCMC method of unadjusted Langevin Monte Carlo (LMC) and provides a non-asymptotic analysis of its sampling error in 2-Wasserstein distance. The proof is based on a mean-square analysis framework refined from Li et al. (2019), which works for a large class of sampling algorithms based on discretizations of contractive SDEs. We establish an $\tilde{O}(\sqrt{d}/\epsilon)$ mixing time bound for LMC, without warm start, under the common log-smooth and log-strongly-convex conditions, plus a growth condition on the 3rd-order derivative of the potential of target measures. This bound improves the best previously known $\tilde{O}(d/\epsilon)$ result and is optimal (in terms of order) in both dimension $d$ and accuracy tolerance $\epsilon$ for target measures satisfying the aforementioned assumptions. Our theoretical analysis is further validated by numerical experiments.
Many bureaucratic and industrial processes involve decision points where an object can be sent to a variety of different stations based on certain preconditions. Consider for example a visa application that has needs to be checked at various stages, and move to different stations based on the outcomes of said checks. While the individual decision points in these processes are well defined, in a complicated system, it is hard to understand the redundancies that can be introduced globally by composing a number of these decisions locally. In this paper, we model these processes as Eulerian paths and give an algorithm for calculating a measure of these redundancies, called isolated loops, as a type of loop count on Eulerian paths, and give a bound on this quantity.
We consider the Sparse Principal Component Analysis (SPCA) problem under the well-known spiked covariance model. Recent work has shown that the SPCA problem can be reformulated as a Mixed Integer Program (MIP) and can be solved to global optimality, leading to estimators that are known to enjoy optimal statistical properties. However, current MIP algorithms for SPCA are unable to scale beyond instances with a thousand features or so. In this paper, we propose a new estimator for SPCA which can be formulated as a MIP. Different from earlier work, we make use of the underlying spiked covariance model and properties of the multivariate Gaussian distribution to arrive at our estimator. We establish statistical guarantees for our proposed estimator in terms of estimation error and support recovery. We propose a custom algorithm to solve the MIP which is significantly more scalable than off-the-shelf solvers; and demonstrate that our approach can be much more computationally attractive compared to earlier exact MIP-based approaches for the SPCA problem. Our numerical experiments on synthetic and real datasets show that our algorithms can address problems with up to 20000 features in minutes; and generally result in favorable statistical properties compared to existing popular approaches for SPCA.
Learning vector autoregressive models from multivariate time series is conventionally approached through least squares or maximum likelihood estimation. These methods typically assume a fully connected model which provides no direct insight to the model structure and may lead to highly noisy estimates of the parameters. Because of these limitations, there has been an increasing interest towards methods that produce sparse estimates through penalized regression. However, such methods are computationally intensive and may become prohibitively time-consuming when the number of variables in the model increases. In this paper we adopt an approximate Bayesian approach to the learning problem by combining fractional marginal likelihood and pseudo-likelihood. We propose a novel method, PLVAR, that is both faster and produces more accurate estimates than the state-of-the-art methods based on penalized regression. We prove the consistency of the PLVAR estimator and demonstrate the attractive performance of the method on both simulated and real-world data.
We establish the error bounds of fourth-order compact finite difference (4cFD) methods for the Dirac equation in the massless and nonrelativistic regime, which involves a small dimensionless parameter $0 < \varepsilon \le 1$ inversely proportional to the speed of light. In this regime, the solution propagates waves with wavelength $O(\varepsilon)$ in time and $O(1)$ in space, as well as with the wave speed $O(1/\varepsilon)$ rapid outgoing waves. We adapt the conservative and semi-implicit 4cFD methods to discretize the Dirac equation and rigorously carry out their error bounds depending explicitly on the mesh size $h$, time step $\tau$ and the small parameter $\varepsilon$. Based on the error bounds, the $\varepsilon$-scalability of the 4cFD methods is $h = O(\varepsilon^{1/4})$ and $\tau = O(\varepsilon^{3/2})$, which not only improves the spatial resolution capacity but also has superior accuracy than classical second-order finite difference methods. Furthermore, physical observables including the total density and current density have the same conclusions. Numerical results are provided to validate the error bounds and the dynamics of the Dirac equation with different potentials in 2D is presented.
The Weisfeiler-Leman procedure is a widely-used technique for graph isomorphism testing that works by iteratively computing an isomorphism-invariant coloring of vertex tuples. Meanwhile, a fundamental tool in structural graph theory, which is often exploited in approaches to tackle the graph isomorphism problem, is the decomposition into 2- and 3-connected components. We prove that the 2-dimensional Weisfeiler-Leman algorithm implicitly computes the decomposition of a graph into its 3-connected components. This implies that the dimension of the algorithm needed to distinguish two given non-isomorphic graphs is at most the dimension required to distinguish non-isomorphic 3-connected components of the graphs (assuming dimension at least 2). To obtain our decomposition result, we show that, for k >= 2, the k-dimensional algorithm distinguishes k-separators, i.e., k-tuples of vertices that separate the graph, from other vertex k-tuples. As a byproduct, we also obtain insights about the connectivity of constituent graphs of association schemes. In an application of the results, we show the new upper bound of k on the Weisfeiler-Leman dimension of the class of graphs of treewidth at most k. Using a construction by Cai, F\"urer, and Immerman, we also provide a new lower bound that is asymptotically tight up to a factor of 2.
Defining shape and form as equivalence classes under translation, rotation and -- for shapes -- also scale, we extend generalized additive regression to models for the shape/form of planar curves or landmark configurations. The model respects the resulting quotient geometry of the response, employing the squared geodesic distance as loss function and a geodesic response function mapping the additive predictor to the shape/form space. For fitting the model, we propose a Riemannian $L_2$-Boosting algorithm well-suited for a potentially large number of possibly parameter-intensive model terms, which also yiels automated model selection. We provide novel intuitively interpretable visualizations for (even non-linear) covariate effects in the shape/form space via suitable tensor based factorizations. The usefulness of the proposed framework is illustrated in an analysis of 1) astragalus shapes of wild and domesticated sheep and 2) cell forms generated in a biophysical model, as well as 3) in a realistic simulation study with response shapes and forms motivated from a dataset on bottle outlines.
We present a product formula for the initial parts of the sparse resultant associated to an arbitrary family of supports, generalising a previous result by Sturmfels. This allows to compute the homogeneities and degrees of the sparse resultant, and its evaluation at systems of Laurent polynomials with smaller supports. We obtain a similar product formula for some of the initial parts of the principal minors of the Sylvester-type square matrix associated to a mixed subdivision of a polytope. Applying these results, we prove that the sparse resultant can be computed as the quotient of the determinant of such a square matrix by a certain principal minor, under suitable hypothesis. This generalises the classical Macaulay formula for the homogeneous resultant, and confirms a conjecture of Canny and Emiris.
High dimensional non-Gaussian time series data are increasingly encountered in a wide range of applications. Conventional estimation methods and technical tools are inadequate when it comes to ultra high dimensional and heavy-tailed data. We investigate robust estimation of high dimensional autoregressive models with fat-tailed innovation vectors by solving a regularized regression problem using convex robust loss function. As a significant improvement, the dimension can be allowed to increase exponentially with the sample size to ensure consistency under very mild moment conditions. To develop the consistency theory, we establish a new Bernstein type inequality for the sum of autoregressive models. Numerical results indicate a good performance of robust estimates.
Similarity/Distance measures play a key role in many machine learning, pattern recognition, and data mining algorithms, which leads to the emergence of metric learning field. Many metric learning algorithms learn a global distance function from data that satisfy the constraints of the problem. However, in many real-world datasets that the discrimination power of features varies in the different regions of input space, a global metric is often unable to capture the complexity of the task. To address this challenge, local metric learning methods are proposed that learn multiple metrics across the different regions of input space. Some advantages of these methods are high flexibility and the ability to learn a nonlinear mapping but typically achieves at the expense of higher time requirement and overfitting problem. To overcome these challenges, this research presents an online multiple metric learning framework. Each metric in the proposed framework is composed of a global and a local component learned simultaneously. Adding a global component to a local metric efficiently reduce the problem of overfitting. The proposed framework is also scalable with both sample size and the dimension of input data. To the best of our knowledge, this is the first local online similarity/distance learning framework based on PA (Passive/Aggressive). In addition, for scalability with the dimension of input data, DRP (Dual Random Projection) is extended for local online learning in the present work. It enables our methods to be run efficiently on high-dimensional datasets, while maintains their predictive performance. The proposed framework provides a straightforward local extension to any global online similarity/distance learning algorithm based on PA.