亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper concerns the intersection of natural language and the physical space around us in which we live, that we observe and/or imagine things within. Many important features of language have spatial connotations, for example, many prepositions (like in, next to, after, on, etc.) are fundamentally spatial. Space is also a key factor of the meanings of many words/phrases/sentences/text, and space is a, if not the key, context for referencing (e.g. pointing) and embodiment. We propose a mechanism for how space and linguistic structure can be made to interact in a matching compositional fashion. Examples include Cartesian space, subway stations, chesspieces on a chess-board, and Penrose's staircase. The starting point for our construction is the DisCoCat model of compositional natural language meaning, which we relax to accommodate physical space. We address the issue of having multiple agents/objects in a space, including the case that each agent has different capabilities with respect to that space, e.g., the specific moves each chesspiece can make, or the different velocities one may be able to reach. Once our model is in place, we show how inferences drawing from the structure of physical space can be made. We also how how linguistic model of space can interact with other such models related to our senses and/or embodiment, such as the conceptual spaces of colour, taste and smell, resulting in a rich compositional model of meaning that is close to human experience and embodiment in the world.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 無偏估計 · Continuity · 估計/估計量 · 馬爾可夫過程 ·
2021 年 11 月 5 日

For rare events described in terms of Markov processes, truly unbiased estimation of the rare event probability generally requires the avoidance of numerical approximations of the Markov process. Recent work in the exact and $\varepsilon$-strong simulation of diffusions, which can be used to almost surely constrain sample paths to a given tolerance, suggests one way to do this. We specify how such algorithms can be combined with the classical multilevel splitting method for rare event simulation. This provides unbiased estimations of the probability in question. We discuss the practical feasibility of the algorithm with reference to existing $\varepsilon$-strong methods and provide proof-of-concept numerical examples.

We introduce Language-Informed Latent Actions (LILA), a framework for learning natural language interfaces in the context of human-robot collaboration. LILA falls under the shared autonomy paradigm: in addition to providing discrete language inputs, humans are given a low-dimensional controller $-$ e.g., a 2 degree-of-freedom (DoF) joystick that can move left/right and up/down $-$ for operating the robot. LILA learns to use language to modulate this controller, providing users with a language-informed control space: given an instruction like "place the cereal bowl on the tray," LILA may learn a 2-DoF space where one dimension controls the distance from the robot's end-effector to the bowl, and the other dimension controls the robot's end-effector pose relative to the grasp point on the bowl. We evaluate LILA with real-world user studies, where users can provide a language instruction while operating a 7-DoF Franka Emika Panda Arm to complete a series of complex manipulation tasks. We show that LILA models are not only more sample efficient and performant than imitation learning and end-effector control baselines, but that they are also qualitatively preferred by users.

Large pretrained language models such as GPT-3 have the surprising ability to do in-context learning, where the model learns to do a downstream task simply by conditioning on a prompt consisting of input-output examples. Without being explicitly pretrained to do so, the language model learns from these examples during its forward pass without parameter updates on "out-of-distribution" prompts. Thus, it is unclear what mechanism enables in-context learning. In this paper, we study the role of the pretraining distribution on the emergence of in-context learning under a mathematical setting where the pretraining texts have long-range coherence. Here, language model pretraining requires inferring a latent document-level concept from the conditioning text to generate coherent next tokens. At test time, this mechanism enables in-context learning by inferring the shared latent concept between prompt examples and applying it to make a prediction on the test example. Concretely, we prove that in-context learning occurs implicitly via Bayesian inference of the latent concept when the pretraining distribution is a mixture of HMMs. This can occur despite the distribution mismatch between prompts and pretraining data. In contrast to messy large-scale pretraining datasets for in-context learning in natural language, we generate a family of small-scale synthetic datasets (GINC) where Transformer and LSTM language models both exhibit in-context learning. Beyond the theory which focuses on the effect of the pretraining distribution, we empirically find that scaling model size improves in-context accuracy even when the pretraining loss is the same.

Active inference is a unifying theory for perception and action resting upon the idea that the brain maintains an internal model of the world by minimizing free energy. From a behavioral perspective, active inference agents can be seen as self-evidencing beings that act to fulfill their optimistic predictions, namely preferred outcomes or goals. In contrast, reinforcement learning requires human-designed rewards to accomplish any desired outcome. Although active inference could provide a more natural self-supervised objective for control, its applicability has been limited because of the shortcomings in scaling the approach to complex environments. In this work, we propose a contrastive objective for active inference that strongly reduces the computational burden in learning the agent's generative model and planning future actions. Our method performs notably better than likelihood-based active inference in image-based tasks, while also being computationally cheaper and easier to train. We compare to reinforcement learning agents that have access to human-designed reward functions, showing that our approach closely matches their performance. Finally, we also show that contrastive methods perform significantly better in the case of distractors in the environment and that our method is able to generalize goals to variations in the background.

The explanation dimension of Artificial Intelligence (AI) based system has been a hot topic for the past years. Different communities have raised concerns about the increasing presence of AI in people's everyday tasks and how it can affect people's lives. There is a lot of research addressing the interpretability and transparency concepts of explainable AI (XAI), which are usually related to algorithms and Machine Learning (ML) models. But in decision-making scenarios, people need more awareness of how AI works and its outcomes to build a relationship with that system. Decision-makers usually need to justify their decision to others in different domains. If that decision is somehow based on or influenced by an AI-system outcome, the explanation about how the AI reached that result is key to building trust between AI and humans in decision-making scenarios. In this position paper, we discuss the role of XAI in decision-making scenarios, our vision of Decision-Making with AI-system in the loop, and explore one case from the literature about how XAI can impact people justifying their decisions, considering the importance of building the human-AI relationship for those scenarios.

Captioning is a crucial and challenging task for video understanding. In videos that involve active agents such as humans, the agent's actions can bring about myriad changes in the scene. These changes can be observable, such as movements, manipulations, and transformations of the objects in the scene -- these are reflected in conventional video captioning. However, unlike images, actions in videos are also inherently linked to social and commonsense aspects such as intentions (why the action is taking place), attributes (such as who is doing the action, on whom, where, using what etc.) and effects (how the world changes due to the action, the effect of the action on other agents). Thus for video understanding, such as when captioning videos or when answering question about videos, one must have an understanding of these commonsense aspects. We present the first work on generating \textit{commonsense} captions directly from videos, in order to describe latent aspects such as intentions, attributes, and effects. We present a new dataset "Video-to-Commonsense (V2C)" that contains 9k videos of human agents performing various actions, annotated with 3 types of commonsense descriptions. Additionally we explore the use of open-ended video-based commonsense question answering (V2C-QA) as a way to enrich our captions. We finetune our commonsense generation models on the V2C-QA task where we ask questions about the latent aspects in the video. Both the generation task and the QA task can be used to enrich video captions.

Deep neural networks have achieved great successes on the image captioning task. However, most of the existing models depend heavily on paired image-sentence datasets, which are very expensive to acquire. In this paper, we make the first attempt to train an image captioning model in an unsupervised manner. Instead of relying on manually labeled image-sentence pairs, our proposed model merely requires an image set, a sentence corpus, and an existing visual concept detector. The sentence corpus is used to teach the captioning model how to generate plausible sentences. Meanwhile, the knowledge in the visual concept detector is distilled into the captioning model to guide the model to recognize the visual concepts in an image. In order to further encourage the generated captions to be semantically consistent with the image, the image and caption are projected into a common latent space so that they can be used to reconstruct each other. Given that the existing sentence corpora are mainly designed for linguistic research and thus with little reference to image contents, we crawl a large-scale image description corpus of 2 million natural sentences to facilitate the unsupervised image captioning scenario. Experimental results show that our proposed model is able to produce quite promising results without using any labeled training pairs.

Current captioning approaches can describe images using black-box architectures whose behavior is hardly controllable and explainable from the exterior. As an image can be described in infinite ways depending on the goal and the context at hand, a higher degree of controllability is needed to apply captioning algorithms in complex scenarios. In this paper, we introduce a novel framework for image captioning which can generate diverse descriptions by allowing both grounding and controllability. Given a control signal in the form of a sequence or set of image regions, we generate the corresponding caption through a recurrent architecture which predicts textual chunks explicitly grounded on regions, following the constraints of the given control. Experiments are conducted on Flickr30k Entities and on COCO Entities, an extended version of COCO in which we add grounding annotations collected in a semi-automatic manner. Results demonstrate that our method achieves state of the art performances on controllable image captioning, in terms of caption quality and diversity. Code will be made publicly available.

This paper discusses and demonstrates the outcomes from our experimentation on Image Captioning. Image captioning is a much more involved task than image recognition or classification, because of the additional challenge of recognizing the interdependence between the objects/concepts in the image and the creation of a succinct sentential narration. Experiments on several labeled datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. As a toy application, we apply image captioning to create video captions, and we advance a few hypotheses on the challenges we encountered.

We discuss problems with the standard approaches to evaluation for tasks like visual question answering, and argue that artificial data can be used to address these as a complement to current practice. We demonstrate that with the help of existing 'deep' linguistic processing technology we are able to create challenging abstract datasets, which enable us to investigate the language understanding abilities of multimodal deep learning models in detail, as compared to a single performance value on a static and monolithic dataset.

北京阿比特科技有限公司