亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hair plays a significant role in personal identity and appearance, making it an essential component of high-quality, photorealistic avatars. Existing approaches either focus on modeling the facial region only or rely on personalized models, limiting their generalizability and scalability. In this paper, we present a novel method for creating high-fidelity avatars with diverse hairstyles. Our method leverages the local similarity across different hairstyles and learns a universal hair appearance prior from multi-view captures of hundreds of people. This prior model takes 3D-aligned features as input and generates dense radiance fields conditioned on a sparse point cloud with color. As our model splits different hairstyles into local primitives and builds prior at that level, it is capable of handling various hair topologies. Through experiments, we demonstrate that our model captures a diverse range of hairstyles and generalizes well to challenging new hairstyles. Empirical results show that our method improves the state-of-the-art approaches in capturing and generating photorealistic, personalized avatars with complete hair.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 推斷 · 近似推斷 · Networks · Analysis ·
2024 年 2 月 5 日

Random graph models are playing an increasingly important role in various fields ranging from social networks, telecommunication systems, to physiologic and biological networks. Within this landscape, the random Kronecker graph model, emerges as a prominent framework for scrutinizing intricate real-world networks. In this paper, we investigate large random Kronecker graphs, i.e., the number of graph vertices $N$ is large. Built upon recent advances in random matrix theory (RMT) and high-dimensional statistics, we prove that the adjacency of a large random Kronecker graph can be decomposed, in a spectral norm sense, into two parts: a small-rank (of rank $O(\log N)$) signal matrix that is linear in the graph parameters and a zero-mean random noise matrix. Based on this result, we propose a ``denoise-and-solve'' approach to infer the key graph parameters, with significantly reduced computational complexity. Experiments on both graph inference and classification are presented to evaluate the our proposed method. In both tasks, the proposed approach yields comparable or advantageous performance, than widely-used graph inference (e.g., KronFit) and graph neural net baselines, at a time cost that scales linearly as the graph size $N$.

The development of deep learning-based models for the compression of hyperspectral images (HSIs) has recently attracted great attention in remote sensing due to the sharp growing of hyperspectral data archives. Most of the existing models achieve either spectral or spatial compression, and do not jointly consider the spatio-spectral redundancies present in HSIs. To address this problem, in this paper we focus our attention on the High Fidelity Compression (HiFiC) model (which is proven to be highly effective for spatial compression problems) and adapt it to perform spatio-spectral compression of HSIs. In detail, we introduce two new models: i) HiFiC using Squeeze and Excitation (SE) blocks (denoted as HiFiC$_{SE}$); and ii) HiFiC with 3D convolutions (denoted as HiFiC$_{3D}$) in the framework of compression of HSIs. We analyze the effectiveness of HiFiC$_{SE}$ and HiFiC$_{3D}$ in compressing the spatio-spectral redundancies with channel attention and inter-dependency analysis. Experimental results show the efficacy of the proposed models in performing spatio-spectral compression, while reconstructing images at reduced bitrates with higher reconstruction quality. The code of the proposed models is publicly available at //git.tu-berlin.de/rsim/HSI-SSC .

We consider the following Markov Reachability decision problems that view Markov Chains as Linear Dynamical Systems: given a finite, rational Markov Chain, source and target states, and a rational threshold, does the probability of reaching the target from the source at the $n^{th}$ step: (i) equal the threshold for some $n$? (ii) cross the threshold for some $n$? (iii) cross the threshold for infinitely many $n$? These problems are respectively known to be equivalent to the Skolem, Positivity, and Ultimate Positivity problems for Linear Recurrence Sequences (LRS), number-theoretic problems whose decidability has been open for decades. We present an elementary reduction from LRS Problems to Markov Reachability Problems that improves the state of the art as follows. (a) We map LRS to ergodic (irreducible and aperiodic) Markov Chains that are ubiquitous, not least by virtue of their spectral structure, and (b) our reduction maps LRS of order $k$ to Markov Chains of order $k+1$: a substantial improvement over the previous reduction that mapped LRS of order $k$ to reducible and periodic Markov chains of order $4k+5$. This contribution is significant in view of the fact that the number-theoretic hardness of verifying Linear Dynamical Systems can often be mitigated by spectral assumptions and restrictions on order.

Inversion by Direct Iteration (InDI) is a new formulation for supervised image restoration that avoids the so-called "regression to the mean" effect and produces more realistic and detailed images than existing regression-based methods. It does this by gradually improving image quality in small steps, similar to generative denoising diffusion models. Image restoration is an ill-posed problem where multiple high-quality images are plausible reconstructions of a given low-quality input. Therefore, the outcome of a single step regression model is typically an aggregate of all possible explanations, therefore lacking details and realism. The main advantage of InDI is that it does not try to predict the clean target image in a single step but instead gradually improves the image in small steps, resulting in better perceptual quality. While generative denoising diffusion models also work in small steps, our formulation is distinct in that it does not require knowledge of any analytic form of the degradation process. Instead, we directly learn an iterative restoration process from low-quality and high-quality paired examples. InDI can be applied to virtually any image degradation, given paired training data. In conditional denoising diffusion image restoration the denoising network generates the restored image by repeatedly denoising an initial image of pure noise, conditioned on the degraded input. Contrary to conditional denoising formulations, InDI directly proceeds by iteratively restoring the input low-quality image, producing high-quality results on a variety of image restoration tasks, including motion and out-of-focus deblurring, super-resolution, compression artifact removal, and denoising.

Large language models and AI chatbots have been at the forefront of democratizing artificial intelligence. However, the releases of ChatGPT and other similar tools have been followed by growing concerns regarding the difficulty of controlling large language models and their outputs. Currently, we are witnessing a cat-and-mouse game where users attempt to misuse the models with a novel attack called prompt injections. In contrast, the developers attempt to discover the vulnerabilities and block the attacks simultaneously. In this paper, we provide an overview of these emergent threats and present a categorization of prompt injections, which can guide future research on prompt injections and act as a checklist of vulnerabilities in the development of LLM interfaces. Moreover, based on previous literature and our own empirical research, we discuss the implications of prompt injections to LLM end users, developers, and researchers.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

Intelligent transportation systems play a crucial role in modern traffic management and optimization, greatly improving traffic efficiency and safety. With the rapid development of generative artificial intelligence (Generative AI) technologies in the fields of image generation and natural language processing, generative AI has also played a crucial role in addressing key issues in intelligent transportation systems, such as data sparsity, difficulty in observing abnormal scenarios, and in modeling data uncertainty. In this review, we systematically investigate the relevant literature on generative AI techniques in addressing key issues in different types of tasks in intelligent transportation systems. First, we introduce the principles of different generative AI techniques, and their potential applications. Then, we classify tasks in intelligent transportation systems into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making. We systematically illustrate how generative AI techniques addresses key issues in these four different types of tasks. Finally, we summarize the challenges faced in applying generative AI to intelligent transportation systems, and discuss future research directions based on different application scenarios.

This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.

Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

北京阿比特科技有限公司