We present an acceleration method for sequences of large-scale linear systems, such as the ones arising from the numerical solution of time-dependent partial differential equations coupled with algebraic constraints. We discuss different approaches to leverage the subspace containing the history of solutions computed at previous time steps in order to generate a good initial guess for the iterative solver. In particular, we propose a novel combination of reduced-order projection with randomized linear algebra techniques, which drastically reduces the number of iterations needed for convergence. We analyze the accuracy of the initial guess produced by the reduced-order projection when the coefficients of the linear system depend analytically on time. Extending extrapolation results by Demanet and Townsend to a vector-valued setting, we show that the accuracy improves rapidly as the size of the history increases, a theoretical result confirmed by our numerical observations. In particular, we apply the developed method to the simulation of plasma turbulence in the boundary of a fusion device, showing that the time needed for solving the linear systems is significantly reduced.
Behavioural metrics provide a quantitative refinement of classical two-valued behavioural equivalences on systems with quantitative data, such as metric or probabilistic transition systems. In analogy to the linear-time/branching-time spectrum of two-valued behavioural equivalences on transition systems, behavioural metrics vary in granularity. We provide a unifying treatment of spectra of behavioural metrics in the emerging framework of graded monads, working in coalgebraic generality, that is, parametrically in the system type. In the ensuing development of quantitative graded semantics, we introduce algebraic presentations of graded monads on the category of metric spaces. Moreover, we obtain a canonical generic notion of invariant real-valued modal logic, and provide criteria for such logics to be expressive in the sense that logical distance coincides with behavioural distance. We present positive examples based on this criterion, covering both known and new expressiveness results; in particular, we show that expressiveness holds essentially always for Eilenberg-Moore type trace semantics, and we obtain a new expressiveness result for trace semantics of fuzzy transition systems. As a negative result, we show that trace distance on probabilistic metric transition systems does not admit any characteristic real-valued modal logic, even in a more broadly understood sense.
Robotic manipulation can greatly benefit from the data efficiency, robustness, and predictability of model-based methods if robots can quickly generate models of novel objects they encounter. This is especially difficult when effects like complex joint friction lack clear first-principles models and are usually ignored by physics simulators. Further, numerically-stiff contact dynamics can make common model-building approaches struggle. We propose a method to simultaneously learn contact and continuous dynamics of a novel, possibly multi-link object by observing its motion through contact-rich trajectories. We formulate a system identification process with a loss that infers unmeasured contact forces, penalizing their violation of physical constraints and laws of motion given current model parameters. Our loss is unlike prediction-based losses used in differentiable simulation. Using a new dataset of real articulated object trajectories and an existing cube toss dataset, our method outperforms differentiable simulation and end-to-end alternatives with more data efficiency. See our project page for code, datasets, and media: //sites.google.com/view/continuous-contact-nets/home
Explainable recommender systems (RS) have traditionally followed a one-size-fits-all approach, delivering the same explanation level of detail to each user, without considering their individual needs and goals. Further, explanations in RS have so far been presented mostly in a static and non-interactive manner. To fill these research gaps, we aim in this paper to adopt a user-centered, interactive explanation model that provides explanations with different levels of detail and empowers users to interact with, control, and personalize the explanations based on their needs and preferences. We followed a user-centered approach to design interactive explanations with three levels of detail (basic, intermediate, and advanced) and implemented them in the transparent Recommendation and Interest Modeling Application (RIMA). We conducted a qualitative user study (N=14) to investigate the impact of providing interactive explanations with varying level of details on the users' perception of the explainable RS. Our study showed qualitative evidence that fostering interaction and giving users control in deciding which explanation they would like to see can meet the demands of users with different needs, preferences, and goals, and consequently can have positive effects on different crucial aspects in explainable recommendation, including transparency, trust, satisfaction, and user experience.
Neural networks have become a powerful tool as surrogate models to provide numerical solutions for scientific problems with increased computational efficiency. This efficiency can be advantageous for numerically challenging problems where time to solution is important or when evaluation of many similar analysis scenarios is required. One particular area of scientific interest is the setting of inverse problems, where one knows the forward dynamics of a system are described by a partial differential equation and the task is to infer properties of the system given (potentially noisy) observations of these dynamics. We consider the inverse problem of inferring the location of a wave source on a square domain, given a noisy solution to the 2-D acoustic wave equation. Under the assumption of Gaussian noise, a likelihood function for source location can be formulated, which requires one forward simulation of the system per evaluation. Using a standard neural network as a surrogate model makes it computationally feasible to evaluate this likelihood several times, and so Markov Chain Monte Carlo methods can be used to evaluate the posterior distribution of the source location. We demonstrate that this method can accurately infer source-locations from noisy data.
We investigate the randomized and quantum communication complexities of the well-studied Equality function with small error probability $\epsilon$, getting optimal constant factors in the leading terms in a number of different models. In the randomized model, 1) we give a general technique to convert public-coin protocols to private-coin protocols by incurring a small multiplicative error, at a small additive cost. This is an improvement over Newman's theorem [Inf. Proc. Let.'91] in the dependence on the error parameter. 2) Using this we obtain a $(\log(n/\epsilon^2)+4)$-cost private-coin communication protocol that computes the $n$-bit Equality function, to error $\epsilon$. This improves upon the $\log(n/\epsilon^3)+O(1)$ upper bound implied by Newman's theorem, and matches the best known lower bound, which follows from Alon [Comb. Prob. Comput.'09], up to an additive $\log\log(1/\epsilon)+O(1)$. In the quantum model, 1) we exhibit a one-way protocol of cost $\log(n/\epsilon)+4$, that uses only pure states and computes the $n$-bit Equality function to error $\epsilon$. This bound was implicitly already shown by Nayak [PhD thesis'99]. 2) We show that any $\epsilon$-error one-way protocol for $n$-bit Equality that uses only pure states communicates at least $\log(n/\epsilon)-\log\log(1/\epsilon)-O(1)$ qubits. 3) We exhibit a one-way protocol of cost $\log(\sqrt{n}/\epsilon)+3$, that uses mixed states and computes the $n$-bit Equality function to error $\epsilon$. This is also tight up to an additive $\log\log(1/\epsilon)+O(1)$, which follows from Alon's result. 4) We study the number of EPR pairs required to be shared in an entanglement-assisted one-way protocol. Our upper bounds also yield upper bounds on the approximate rank and related measures of the Identity matrix.
Every major technical invention resurfaces the dual-use dilemma -- the new technology has the potential to be used for good as well as for harm. Generative AI (GenAI) techniques, such as large language models (LLMs) and diffusion models, have shown remarkable capabilities (e.g., in-context learning, code-completion, and text-to-image generation and editing). However, GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks. This paper reports the findings of a workshop held at Google (co-organized by Stanford University and the University of Wisconsin-Madison) on the dual-use dilemma posed by GenAI. This paper is not meant to be comprehensive, but is rather an attempt to synthesize some of the interesting findings from the workshop. We discuss short-term and long-term goals for the community on this topic. We hope this paper provides both a launching point for a discussion on this important topic as well as interesting problems that the research community can work to address.
Dense depth and surface normal predictors should possess the equivariant property to cropping-and-resizing -- cropping the input image should result in cropping the same output image. However, we find that state-of-the-art depth and normal predictors, despite having strong performances, surprisingly do not respect equivariance. The problem exists even when crop-and-resize data augmentation is employed during training. To remedy this, we propose an equivariant regularization technique, consisting of an averaging procedure and a self-consistency loss, to explicitly promote cropping-and-resizing equivariance in depth and normal networks. Our approach can be applied to both CNN and Transformer architectures, does not incur extra cost during testing, and notably improves the supervised and semi-supervised learning performance of dense predictors on Taskonomy tasks. Finally, finetuning with our loss on unlabeled images improves not only equivariance but also accuracy of state-of-the-art depth and normal predictors when evaluated on NYU-v2. GitHub link: //github.com/mikuhatsune/equivariance
Recently, machine learning of the branch and bound algorithm has shown promise in approximating competent solutions to NP-hard problems. In this paper, we utilize and comprehensively compare the outcomes of three neural networks--graph convolutional neural network (GCNN), GraphSAGE, and graph attention network (GAT)--to solve the capacitated vehicle routing problem. We train these neural networks to emulate the decision-making process of the computationally expensive Strong Branching strategy. The neural networks are trained on six instances with distinct topologies from the CVRPLIB and evaluated on eight additional instances. Moreover, we reduced the minimum number of vehicles required to solve a CVRP instance to a bin-packing problem, which was addressed in a similar manner. Through rigorous experimentation, we found that this approach can match or improve upon the performance of the branch and bound algorithm with the Strong Branching strategy while requiring significantly less computational time. The source code that corresponds to our research findings and methodology is readily accessible and available for reference at the following web address: //isotlaboratory.github.io/ml4vrp
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.