亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the Maximum Independent Set of Rectangles (MISR) problem, where we are given a set of axis-parallel rectangles in the plane and the goal is to select a subset of non-overlapping rectangles of maximum cardinality. In a recent breakthrough, Mitchell [2021] obtained the first constant-factor approximation algorithm for MISR. His algorithm achieves an approximation ratio of 10 and it is based on a dynamic program that intuitively recursively partitions the input plane into special polygons called corner-clipped rectangles (CCRs), without intersecting certain special horizontal line segments called fences. In this paper, we present a $(2+\epsilon)$-approximation algorithm for MISR which is also based on a recursive partitioning scheme. First, we use a partition into a class of axis-parallel polygons with constant complexity each that are more general than CCRs. This allows us to provide an arguably simpler analysis and at the same time already improves the approximation ratio to 6. Then, using a more elaborate charging scheme and a recursive partitioning into general axis-parallel polygons with constant complexity, we improve our approximation ratio to $2+\epsilon$. In particular, we construct a recursive partitioning based on more general fences which can be sequences of up to $O(1/\epsilon)$ line segments each. This partitioning routine and our other new ideas may be useful for future work towards a PTAS for MISR.

相關內容

We give two approximation algorithms solving the Stochastic Boolean Function Evaluation (SBFE) problem for symmetric Boolean functions. The first is an $O(\log n)$-approximation algorithm, based on the submodular goal-value approach of Deshpande, Hellerstein and Kletenik. Our second algorithm, which is simple, is based on the algorithm solving the SBFE problem for $k$-of-$n$ functions, due to Salloum, Breuer, and Ben-Dov. It achieves a $(B-1)$ approximation factor, where $B$ is the number of blocks of 0's and 1's in the standard vector representation of the symmetric Boolean function. As part of the design of the first algorithm, we prove that the goal value of any symmetric Boolean function is less than $n(n+1)/2$. Finally, we give an example showing that for symmetric Boolean functions, minimum expected verification cost and minimum expected evaluation cost are not necessarily equal. This contrasts with a previous result, given by Das, Jafarpour, Orlitsky, Pan and Suresh, which showed that equality holds in the unit-cost case.

The Sum-of-Squares (SoS) hierarchy of semidefinite programs is a powerful algorithmic paradigm which captures state-of-the-art algorithmic guarantees for a wide array of problems. In the average case setting, SoS lower bounds provide strong evidence of algorithmic hardness or information-computation gaps. Prior to this work, SoS lower bounds have been obtained for problems in the "dense" input regime, where the input is a collection of independent Rademacher or Gaussian random variables, while the sparse regime has remained out of reach. We make the first progress in this direction by obtaining strong SoS lower bounds for the problem of Independent Set on sparse random graphs. We prove that with high probability over an Erdos-Renyi random graph $G\sim G_{n,\frac{d}{n}}$ with average degree $d>\log^2 n$, degree-$D_{SoS}$ SoS fails to refute the existence of an independent set of size $k = \Omega\left(\frac{n}{\sqrt{d}(\log n)(D_{SoS})^{c_0}} \right)$ in $G$ (where $c_0$ is an absolute constant), whereas the true size of the largest independent set in $G$ is $O\left(\frac{n\log d}{d}\right)$. Our proof involves several significant extensions of the techniques used for proving SoS lower bounds in the dense setting. Previous lower bounds are based on the pseudo-calibration heuristic of Barak et al [FOCS 2016] which produces a candidate SoS solution using a planted distribution indistinguishable from the input distribution via low-degree tests. In the sparse case the natural planted distribution does admit low-degree distinguishers, and we show how to adapt the pseudo-calibration heuristic to overcome this. Another notorious technical challenge for the sparse regime is the quest for matrix norm bounds. In this paper, we obtain new norm bounds for graph matrices in the sparse setting.

Spanners have been shown to be a powerful tool in graph algorithms. Many spanner constructions use a certain type of clustering at their core, where each cluster has small diameter and there are relatively few spanner edges between clusters. In this paper, we provide a clustering algorithm that, given $k\geq 2$, can be used to compute a spanner of stretch $2k-1$ and expected size $O(n^{1+1/k})$ in $k$ rounds in the CONGEST model. This improves upon the state of the art (by Elkin, and Neiman [TALG'19]) by making the bounds on both running time and stretch independent of the random choices of the algorithm, whereas they only hold with high probability in previous results. Spanners are used in certain synchronizers, thus our improvement directly carries over to such synchronizers. Furthermore, for keeping the \emph{total} number of inter-cluster edges small in low diameter decompositions, our clustering algorithm provides the following guarantees. Given $\beta\in (0,1]$, we compute a low diameter decomposition with diameter bound $O\left(\frac{\log n}{\beta}\right)$ such that each edge $e\in E$ is an inter-cluster edge with probability at most $\beta\cdot w(e)$ in $O\left(\frac{\log n}{\beta}\right)$ rounds in the CONGEST model. Again, this improves upon the state of the art (by Miller, Peng, and Xu [SPAA'13]) by making the bounds on both running time and diameter independent of the random choices of the algorithm, whereas they only hold with high probability in previous results.

The unlabeled sensing problem is to solve a noisy linear system of equations under unknown permutation of the measurements. We study a particular case of the problem where the permutations are restricted to be r-local, i.e. the permutation matrix is block diagonal with r x r blocks. Assuming a Gaussian measurement matrix, we argue that the r-local permutation model is more challenging compared to a recent sparse permutation model. We propose a proximal alternating minimization algorithm for the general unlabeled sensing problem that provably converges to a first order stationary point. Applied to the r-local model, we show that the resulting algorithm is efficient. We validate the algorithm on synthetic and real datasets. We also formulate the 1-d unassigned distance geometry problem as an unlabeled sensing problem with a structured measurement matrix.

We analyze the impact of transient and Byzantine faults on the construction of a maximal independent set in a general network. We adapt the self-stabilizing algorithm presented by Turau \cite{turau2007linear} for computing such a vertex set. Our algorithm is self-stabilizing and also works under the more difficult context of arbitrary Byzantine faults. Byzantine nodes can prevent nodes close to them from taking part in the independent set for an arbitrarily long time. We give boundaries to their impact by focusing on the set of all nodes excluding nodes at distance 1 or less of Byzantine nodes, and excluding some of the nodes at distance 2. As far as we know, we present the first algorithm tolerating both transient and Byzantine faults under the fair distributed daemon. We prove that this algorithm converges in $ \mathcal O(\Delta n)$ rounds w.h.p., where $n$ and $\Delta$ are the size and the maximum degree of the network, resp. Additionally, we present a modified version of this algorithm for anonymous systems under the adversarial distributed daemon that converges in $ \mathcal O(n^{2})$ expected number of steps.

It is well-known that an algorithm exists which approximates the NP-complete problem of Set Cover within a factor of ln(n), and it was recently proven that this approximation ratio is optimal unless P = NP. This optimality result is the product of many advances in characterizations of NP, in terms of interactive proof systems and probabilistically checkable proofs (PCP), and improvements to the analyses thereof. However, as a result, it is difficult to extract the development of Set Cover approximation bounds from the greater scope of proof system analysis. This paper attempts to present a chronological progression of results on lower-bounding the approximation ratio of Set Cover. We analyze a series of proofs of progressively better bounds and unify the results under similar terminologies and frameworks to provide an accurate comparison of proof techniques and their results. We also treat many preliminary results as black-boxes to better focus our analysis on the core reductions to Set Cover instances. The result is alternative versions of several hardness proofs, beginning with initial inapproximability results and culminating in a version of the proof that ln(n) is a tight lower bound.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.

北京阿比特科技有限公司