Randomized Maximum Likelihood (RML) is an approximate posterior sampling methodology, widely used in Bayesian inverse problems with complex forward models, particularly in petroleum engineering applications. The procedure involves solving a multi-objective optimization problem, which can be challenging in high-dimensions and when there are constraints on computational costs. We propose a new methodology for tackling the RML optimization problem based on the high-dimensional Bayesian optimization literature. By sharing data between the different objective functions, we are able to implement RML at a greatly reduced computational cost. We demonstrate the benefits of our methodology in comparison with the solutions obtained by alternative optimization methods on a variety of synthetic and real-world problems, including medical and fluid dynamics applications. Furthermore, we show that the samples produced by our method cover well the high-posterior density regions in all of the experiments.
We study the scaling limits of stochastic gradient descent (SGD) with constant step-size in the high-dimensional regime. We prove limit theorems for the trajectories of summary statistics (i.e., finite-dimensional functions) of SGD as the dimension goes to infinity. Our approach allows one to choose the summary statistics that are tracked, the initialization, and the step-size. It yields both ballistic (ODE) and diffusive (SDE) limits, with the limit depending dramatically on the former choices. Interestingly, we find a critical scaling regime for the step-size below which the effective ballistic dynamics matches gradient flow for the population loss, but at which, a new correction term appears which changes the phase diagram. About the fixed points of this effective dynamics, the corresponding diffusive limits can be quite complex and even degenerate. We demonstrate our approach on popular examples including estimation for spiked matrix and tensor models and classification via two-layer networks for binary and XOR-type Gaussian mixture models. These examples exhibit surprising phenomena including multimodal timescales to convergence as well as convergence to sub-optimal solutions with probability bounded away from zero from random (e.g., Gaussian) initializations.
In high-dimensional prediction settings, it remains challenging to reliably estimate the test performance. To address this challenge, a novel performance estimation framework is presented. This framework, called Learn2Evaluate, is based on learning curves by fitting a smooth monotone curve depicting test performance as a function of the sample size. Learn2Evaluate has several advantages compared to commonly applied performance estimation methodologies. Firstly, a learning curve offers a graphical overview of a learner. This overview assists in assessing the potential benefit of adding training samples and it provides a more complete comparison between learners than performance estimates at a fixed subsample size. Secondly, a learning curve facilitates in estimating the performance at the total sample size rather than a subsample size. Thirdly, Learn2Evaluate allows the computation of a theoretically justified and useful lower confidence bound. Furthermore, this bound may be tightened by performing a bias correction. The benefits of Learn2Evaluate are illustrated by a simulation study and applications to omics data.
Personalised federated learning (FL) aims at collaboratively learning a machine learning model taylored for each client. Albeit promising advances have been made in this direction, most of existing approaches works do not allow for uncertainty quantification which is crucial in many applications. In addition, personalisation in the cross-device setting still involves important issues, especially for new clients or those having small number of observations. This paper aims at filling these gaps. To this end, we propose a novel methodology coined FedPop by recasting personalised FL into the population modeling paradigm where clients' models involve fixed common population parameters and random effects, aiming at explaining data heterogeneity. To derive convergence guarantees for our scheme, we introduce a new class of federated stochastic optimisation algorithms which relies on Markov chain Monte Carlo methods. Compared to existing personalised FL methods, the proposed methodology has important benefits: it is robust to client drift, practical for inference on new clients, and above all, enables uncertainty quantification under mild computational and memory overheads. We provide non-asymptotic convergence guarantees for the proposed algorithms and illustrate their performances on various personalised federated learning tasks.
Practical data assimilation algorithms often contain hyper-parameters, which may arise due to, for instance, the use of certain auxiliary techniques like covariance inflation and localization in an ensemble Kalman filter, the re-parameterization of certain quantities such as model and/or observation error covariance matrices, and so on. Given the richness of the established assimilation algorithms, and the abundance of the approaches through which hyper-parameters are introduced to the assimilation algorithms, one may ask whether it is possible to develop a sound and generic method to efficiently choose various types of (sometimes high-dimensional) hyper-parameters. This work aims to explore a feasible, although likely partial, answer to this question. Our main idea is built upon the notion that a data assimilation algorithm with hyper-parameters can be considered as a parametric mapping that links a set of quantities of interest (e.g., model state variables and/or parameters) to a corresponding set of predicted observations in the observation space. As such, the choice of hyper-parameters can be recast as a parameter estimation problem, in which our objective is to tune the hyper-parameters in such a way that the resulted predicted observations can match the real observations to a good extent. From this perspective, we propose a hyper-parameter estimation workflow and investigate the performance of this workflow in an ensemble Kalman filter. In a series of experiments, we observe that the proposed workflow works efficiently even in the presence of a relatively large amount (up to $10^3$) of hyper-parameters, and exhibits reasonably good and consistent performance under various conditions.
We consider a high-dimensional mean estimation problem over a binary hidden Markov model, which illuminates the interplay between memory in data, sample size, dimension, and signal strength in statistical inference. In this model, an estimator observes $n$ samples of a $d$-dimensional parameter vector $\theta_{*}\in\mathbb{R}^{d}$, multiplied by a random sign $ S_i $ ($1\le i\le n$), and corrupted by isotropic standard Gaussian noise. The sequence of signs $\{S_{i}\}_{i\in[n]}\in\{-1,1\}^{n}$ is drawn from a stationary homogeneous Markov chain with flip probability $\delta\in[0,1/2]$. As $\delta$ varies, this model smoothly interpolates two well-studied models: the Gaussian Location Model for which $\delta=0$ and the Gaussian Mixture Model for which $\delta=1/2$. Assuming that the estimator knows $\delta$, we establish a nearly minimax optimal (up to logarithmic factors) estimation error rate, as a function of $\|\theta_{*}\|,\delta,d,n$. We then provide an upper bound to the case of estimating $\delta$, assuming a (possibly inaccurate) knowledge of $\theta_{*}$. The bound is proved to be tight when $\theta_{*}$ is an accurately known constant. These results are then combined to an algorithm which estimates $\theta_{*}$ with $\delta$ unknown a priori, and theoretical guarantees on its error are stated.
We systematically describe the problem of simultaneous surrogate modeling of mixed variables (i.e., continuous, integer and categorical variables) in the Bayesian optimization (BO) context. We provide a unified hybrid model using both Monte-Carlo tree search (MCTS) and Gaussian processes (GP) that encompasses and generalizes multiple state-of-the-art mixed BO surrogates. Based on the architecture, we propose applying a new dynamic model selection criterion among novel candidate families of covariance kernels, including non-stationary kernels and associated families. Different benchmark problems are studied and presented to support the superiority of our model, along with results highlighting the effectiveness of our method compared to most state-of-the-art mixed-variable methods in BO.
Analyzing time series in the frequency domain enables the development of powerful tools for investigating the second-order characteristics of multivariate stochastic processes. Parameters like the spectral density matrix and its inverse, the coherence or the partial coherence, encode comprehensively the complex linear relations between the component processes of the multivariate system. In this paper, we develop inference procedures for such parameters in a high-dimensional, time series setup. In particular, we first focus on the derivation of consistent estimators of the coherence and, more importantly, of the partial coherence which possess manageable limiting distributions that are suitable for testing purposes. Statistical tests of the hypothesis that the maximum over frequencies of the coherence, respectively, of the partial coherence, do not exceed a prespecified threshold value are developed. Our approach allows for testing hypotheses for individual coherences and/or partial coherences as well as for multiple testing of large sets of such parameters. In the latter case, a consistent procedure to control the false discovery rate is developed. The finite sample performance of the inference procedures proposed is investigated by means of simulations and applications to the construction of graphical interaction models for brain connectivity based on EEG data are presented.
In this paper, a new weighted average estimator (WAVE) is proposed to enhance the performance of the simple-averaging based distributed estimator, under a general loss with a high dimensional parameter. To obtain an efficient estimator, a weighted least-square ensemble framework plus an adaptive $L_1$ penalty is proposed, in which the local estimator is estimated via the adaptive-lasso and the weight is inversely proportional to the variance of local estimators. It can be proved that WAVE enjoys the same asymptotic properties as the global estimator and simultaneously spend a very low communication cost, only requiring the local worker to deliver two vectors to the master. Moreover, it is shown that WAVE is effective even when the samples across local workers have different mean and covariance. In particular, the asymptotic normality is established under such conditions, while other competitors may not own this property. The effectiveness of WAVE is further illustrated by an extensive numerical study and a real data analysis.
Federated Learning is an emerging learning paradigm that allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions. Despite its success, federated learning faces several challenges related to its decentralized nature. In this work, we develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles, namely (i) data heterogeneity, i.e., data distributions can vary substantially across clients, and (ii) system heterogeneity, i.e., the computational power of the clients could differ significantly. Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client. Furthermore, our method mitigates the effects of stragglers by adaptively selecting clients based on their computational characteristics and statistical significance, thus achieving, for the first time, near optimal sample complexity and provable logarithmic speedup. Experimental results support our theoretical findings showing the superiority of our method over alternative personalized federated schemes in system and data heterogeneous environments.
The Ensemble Kalman Filters (EnKF) employ a Monte-Carlo approach to represent covariance information, and are affected by sampling errors in operational settings where the number of model realizations is much smaller than the model state dimension. To alleviate the effects of these errors EnKF relies on model-specific heuristics such as covariance localization, which takes advantage of the spatial locality of correlations among the model variables. This work proposes an approach to alleviate sampling errors that utilizes a locally averaged-in-time dynamics of the model, described in terms of a climatological covariance of the dynamical system. We use this covariance as the target matrix in covariance shrinkage methods, and develop a stochastic covariance shrinkage approach where synthetic ensemble members are drawn to enrich both the ensemble subspace and the ensemble transformation. We additionally provide for a way in which this methodology can be localized similar to the state-of-the-art LETKF method, and that for a certain model setup, our methodology significantly outperforms it.