We study the statistical inference of nonlinear stochastic approximation algorithms utilizing a single trajectory of Markovian data. Our methodology has practical applications in various scenarios, such as Stochastic Gradient Descent (SGD) on autoregressive data and asynchronous Q-Learning. By utilizing the standard stochastic approximation (SA) framework to estimate the target parameter, we establish a functional central limit theorem for its partial-sum process, $\boldsymbol{\phi}_T$. To further support this theory, we provide a matching semiparametric efficient lower bound and a non-asymptotic upper bound on its weak convergence, measured in the L\'evy-Prokhorov metric. This functional central limit theorem forms the basis for our inference method. By selecting any continuous scale-invariant functional $f$, the asymptotic pivotal statistic $f(\boldsymbol{\phi}_T)$ becomes accessible, allowing us to construct an asymptotically valid confidence interval. We analyze the rejection probability of a family of functionals $f_m$, indexed by $m \in \mathbb{N}$, through theoretical and numerical means. The simulation results demonstrate the validity and efficiency of our method.
Bayesian nonparametric hierarchical priors provide flexible models for sharing of information within and across groups. We focus on latent feature allocation models, where the data structures correspond to multisets or unbounded sparse matrices. The fundamental development in this regard is the Hierarchical Indian Buffet process (HIBP), devised by Thibaux and Jordan (2007). However, little is known in terms of explicit tractable descriptions of the joint, marginal, posterior and predictive distributions of the HIBP. We provide explicit novel descriptions of these quantities, in the Bernoulli HIBP and general spike and slab HIBP settings, which allows for exact sampling and simpler practical implementation. We then extend these results to the more complex setting of hierarchies of general HIBP (HHIBP). The generality of our framework allows one to recognize important structure that may otherwise be masked in the Bernoulli setting, and involves characterizations via dynamic mixed Poisson random count matrices. Our analysis shows that the standard choice of hierarchical Beta processes for modeling across group sharing is not ideal in the classic Bernoulli HIBP setting proposed by Thibaux and Jordan (2007), or other spike and slab HIBP settings, and we thus indicate tractable alternative priors.
We develop scalable randomized kernel methods for jointly associating data from multiple sources and simultaneously predicting an outcome or classifying a unit into one of two or more classes. The proposed methods model nonlinear relationships in multiview data together with predicting a clinical outcome and are capable of identifying variables or groups of variables that best contribute to the relationships among the views. We use the idea that random Fourier bases can approximate shift-invariant kernel functions to construct nonlinear mappings of each view and we use these mappings and the outcome variable to learn view-independent low-dimensional representations. Through simulation studies, we show that the proposed methods outperform several other linear and nonlinear methods for multiview data integration. When the proposed methods were applied to gene expression, metabolomics, proteomics, and lipidomics data pertaining to COVID-19, we identified several molecular signatures forCOVID-19 status and severity. Results from our real data application and simulations with small sample sizes suggest that the proposed methods may be useful for small sample size problems. Availability: Our algorithms are implemented in Pytorch and interfaced in R and would be made available at: //github.com/lasandrall/RandMVLearn.
In recent years, functional neural networks have been proposed and studied in order to approximate nonlinear continuous functionals defined on $L^p([-1, 1]^s)$ for integers $s\ge1$ and $1\le p<\infty$. However, their theoretical properties are largely unknown beyond universality of approximation or the existing analysis does not apply to the rectified linear unit (ReLU) activation function. To fill in this void, we investigate here the approximation power of functional deep neural networks associated with the ReLU activation function by constructing a continuous piecewise linear interpolation under a simple triangulation. In addition, we establish rates of approximation of the proposed functional deep ReLU networks under mild regularity conditions. Finally, our study may also shed some light on the understanding of functional data learning algorithms.
Numerical vector aggregation plays a crucial role in privacy-sensitive applications, such as distributed gradient estimation in federated learning and statistical analysis of key-value data. In the context of local differential privacy, this study provides a tight minimax error bound of $O(\frac{ds}{n\epsilon^2})$, where $d$ represents the dimension of the numerical vector and $s$ denotes the number of non-zero entries. By converting the conditional/unconditional numerical mean estimation problem into a frequency estimation problem, we develop an optimal and efficient mechanism called Collision. In contrast, existing methods exhibit sub-optimal error rates of $O(\frac{d^2}{n\epsilon^2})$ or $O(\frac{ds^2}{n\epsilon^2})$. Specifically, for unconditional mean estimation, we leverage the negative correlation between two frequencies in each dimension and propose the CoCo mechanism, which further reduces estimation errors for mean values compared to Collision. Moreover, to surpass the error barrier in local privacy, we examine privacy amplification in the shuffle model for the proposed mechanisms and derive precisely tight amplification bounds. Our experiments validate and compare our mechanisms with existing approaches, demonstrating significant error reductions for frequency estimation and mean estimation on numerical vectors.
With the rising complexity of numerous novel applications that serve our modern society comes the strong need to design efficient computing platforms. Designing efficient hardware is, however, a complex multi-objective problem that deals with multiple parameters and their interactions. Given that there are a large number of parameters and objectives involved in hardware design, synthesizing all possible combinations is not a feasible method to find the optimal solution. One promising approach to tackle this problem is statistical modeling of a desired hardware performance. Here, we propose a model-based active learning approach to solve this problem. Our proposed method uses Bayesian models to characterize various aspects of hardware performance. We also use transfer learning and Gaussian regression bootstrapping techniques in conjunction with active learning to create more accurate models. Our proposed statistical modeling method provides hardware models that are sufficiently accurate to perform design space exploration as well as performance prediction simultaneously. We use our proposed method to perform design space exploration and performance prediction for various hardware setups, such as micro-architecture design and OpenCL kernels for FPGA targets. Our experiments show that the number of samples required to create performance models significantly reduces while maintaining the predictive power of our proposed statistical models. For instance, in our performance prediction setting, the proposed method needs 65% fewer samples to create the model, and in the design space exploration setting, our proposed method can find the best parameter settings by exploring less than 50 samples.
In this contribution we propose a data-driven surrogate model for the prediction of magnetic stray fields in two-dimensional random micro-heterogeneous materials. Since data driven models require thousands of training data sets, FEM simulations appear to be too time consuming. Hence, a stochastic model based on Brownian motion, which utilizes an efficient evaluation of stochastic transition matrices, is applied for the training data generation. For the encoding of the microstructure and the optimization of the surrogate model, two architectures are compared, i.e. the so-called UResNet model and the Fourier Convolutional neural network (FCNN). Here we analyze two FCNNs, one based on the discrete cosine transformation and one based on the complex-valued discrete Fourier transformation. Finally, we compare the magnetic stray fields for independent microstructures (not used in the training set) with results from the FE$^2$ method, a numerical homogenization scheme, to demonstrate the efficiency of the proposed surrogate model.
We introduce the Weak-form Estimation of Nonlinear Dynamics (WENDy) method for estimating model parameters for non-linear systems of ODEs. Without relying on any numerical differential equation solvers, WENDy computes accurate estimates and is robust to large (biologically relevant) levels of measurement noise. For low dimensional systems with modest amounts of data, WENDy is competitive with conventional forward solver-based nonlinear least squares methods in terms of speed and accuracy. For both higher dimensional systems and stiff systems, WENDy is typically both faster (often by orders of magnitude) and more accurate than forward solver-based approaches. The core mathematical idea involves an efficient conversion of the strong form representation of a model to its weak form, and then solving a regression problem to perform parameter inference. The core statistical idea rests on the Errors-In-Variables framework, which necessitates the use of the iteratively reweighted least squares algorithm. Further improvements are obtained by using orthonormal test functions, created from a set of C-infinity bump functions of varying support sizes. We demonstrate the high robustness and computational efficiency by applying WENDy to estimate parameters in some common models from population biology, neuroscience, and biochemistry, including logistic growth, Lotka-Volterra, FitzHugh-Nagumo, Hindmarsh-Rose, and a Protein Transduction Benchmark model. Software and code for reproducing the examples is available at (//github.com/MathBioCU/WENDy).
Humans have a powerful and mysterious capacity to reason. By working through a series of purely mental steps, we can make inferences we would not be capable of making directly -- despite that fact that we get no additional data from the world. Similarly, large language models can perform better at complex tasks through chain-of-thought reasoning, where they generate intermediate steps before answering a question. We use language models to investigate the questions of when and why reasoning is helpful, testing the hypothesis that reasoning is effective when training data consisting of local clusters of variables that influence each other strongly. These training conditions enable the chaining of accurate local inferences in order to estimate relationships between variables that were not seen together in training. We train an autoregressive transformer on samples from joint distributions defined by Bayes nets, but only include a subset of all the variables in each sample. We compare language models' ability to match conditional probabilities both with and without intermediate reasoning steps, finding that intermediate steps help only when the training data is locally structured with respect to dependencies between variables. Furthermore, intermediate variables need to be relevant to the relationship between observed information and target inferences. Our results illustrate how the statistical structure of training data drives the effectiveness of reasoning step by step.
Backward Stochastic Differential Equations (BSDEs) have been widely employed in various areas of social and natural sciences, such as the pricing and hedging of financial derivatives, stochastic optimal control problems, optimal stopping problems and gene expression. Most BSDEs cannot be solved analytically and thus numerical methods must be applied to approximate their solutions. There have been a variety of numerical methods proposed over the past few decades as well as many more currently being developed. For the most part, they exist in a complex and scattered manner with each requiring a variety of assumptions and conditions. The aim of the present work is thus to systematically survey various numerical methods for BSDEs, and in particular, compare and categorize them, for further developments and improvements. To achieve this goal, we focus primarily on the core features of each method based on an extensive collection of 333 references: the main assumptions, the numerical algorithm itself, key convergence properties and advantages and disadvantages, to provide an up-to-date coverage of numerical methods for BSDEs, with insightful summaries of each and a useful comparison and categorization.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.