We introduce a two-step method for the matrix recovery problem. Our approach combines the theoretical foundations of the Column Subset Selection and Low-rank Matrix Completion problems. The proposed method, in each step, solves a convex optimization task. We present two algorithms that implement our Columns Selected Matrix Completion (CSMC) method, each dedicated to a different size problem. We performed a formal analysis of the presented method, in which we formulated the necessary assumptions and the probability of finding a correct solution. In the second part of the paper, we present the results of the experimental work. Numerical experiments verified the correctness and performance of the algorithms. To study the influence of the matrix size, rank, and the proportion of missing elements on the quality of the solution and the computation time, we performed experiments on synthetic data. The presented method was applied to two real-life problems problems: prediction of movie rates in a recommendation system and image inpainting. Our thorough analysis shows that CSMC provides solutions of comparable quality to matrix completion algorithms, which are based on convex optimization. However, CSMC offers notable savings in terms of runtime.
We introduce a novel meta-analysis framework to combine dependent tests under a general setting, and utilize it to synthesize various microbiome association tests that are calculated from the same dataset. Our development builds upon the classical meta-analysis methods of aggregating $p$-values and also a more recent general method of combining confidence distributions, but makes generalizations to handle dependent tests. The proposed framework ensures rigorous statistical guarantees, and we provide a comprehensive study and compare it with various existing dependent combination methods. Notably, we demonstrate that the widely used Cauchy combination method for dependent tests, referred to as the vanilla Cauchy combination in this article, can be viewed as a special case within our framework. Moreover, the proposed framework provides a way to address the problem when the distributional assumptions underlying the vanilla Cauchy combination are violated. Our numerical results demonstrate that ignoring the dependence among the to-be-combined components may lead to a severe size distortion phenomenon. Compared to the existing $p$-value combination methods, including the vanilla Cauchy combination method, the proposed combination framework can handle the dependence accurately and utilizes the information efficiently to construct tests with accurate size and enhanced power. The development is applied to Microbiome Association Studies, where we aggregate information from multiple existing tests using the same dataset. The combined tests harness the strengths of each individual test across a wide range of alternative spaces, %resulting in a significant enhancement of testing power across a wide range of alternative spaces, enabling more efficient and meaningful discoveries of vital microbiome associations.
Sparse variational approximations are popular methods for scaling up inference and learning in Gaussian processes to larger datasets. For $N$ training points, exact inference has $O(N^3)$ cost; with $M \ll N$ features, state of the art sparse variational methods have $O(NM^2)$ cost. Recently, methods have been proposed using more sophisticated features; these promise $O(M^3)$ cost, with good performance in low dimensional tasks such as spatial modelling, but they only work with a very limited class of kernels, excluding some of the most commonly used. In this work, we propose integrated Fourier features, which extends these performance benefits to a very broad class of stationary covariance functions. We motivate the method and choice of parameters from a convergence analysis and empirical exploration, and show practical speedup in synthetic and real world spatial regression tasks.
Despite the considerable success of Bregman proximal-type algorithms, such as mirror descent, in machine learning, a critical question remains: Can existing stationarity measures, often based on Bregman divergence, reliably distinguish between stationary and non-stationary points? In this paper, we present a groundbreaking finding: All existing stationarity measures necessarily imply the existence of spurious stationary points. We further establish an algorithmic independent hardness result: Bregman proximal-type algorithms are unable to escape from a spurious stationary point in finite steps when the initial point is unfavorable, even for convex problems. Our hardness result points out the inherent distinction between Euclidean and Bregman geometries, and introduces both fundamental theoretical and numerical challenges to both machine learning and optimization communities.
Nowadays, the spread of misinformation is a prominent problem in society. Our research focuses on aiding the automatic identification of misinformation by analyzing the persuasive strategies employed in textual documents. We introduce a novel annotation scheme encompassing common persuasive writing tactics to achieve our objective. Additionally, we provide a dataset on health misinformation, thoroughly annotated by experts utilizing our proposed scheme. Our contribution includes proposing a new task of annotating pieces of text with their persuasive writing strategy types. We evaluate fine-tuning and prompt-engineering techniques with pre-trained language models of the BERT family and the generative large language models of the GPT family using persuasive strategies as an additional source of information. We evaluate the effects of employing persuasive strategies as intermediate labels in the context of misinformation detection. Our results show that those strategies enhance accuracy and improve the explainability of misinformation detection models. The persuasive strategies can serve as valuable insights and explanations, enabling other models or even humans to make more informed decisions regarding the trustworthiness of the information.
We propose a simple modification to the conventional attention mechanism applied by Transformers: Instead of quantifying pairwise query-key similarity with scaled dot-products, we quantify it with the logarithms of scaled dot-products of exponentials. Attention becomes expressible as a composition of log-sums of exponentials that is linearizable, with a latent space of constant size, enabling sequential application with constant time and space complexity per token. We implement our modification, verify that it works in practice, and conclude that it is a promising alternative to conventional attention.
This paper proposes a methodology for generating and perturbing detailed derivations of equations at scale, aided by a symbolic engine, to evaluate the generalisability of Transformers to out-of-distribution mathematical reasoning problems. Instantiating the framework in the context of sequence classification tasks, we compare the capabilities of GPT-4, GPT-3.5, and a canon of fine-tuned BERT models, exploring the relationship between specific operators and generalisation failure via the perturbation of reasoning aspects such as symmetry and variable surface forms. Surprisingly, our empirical evaluation reveals that the average in-distribution performance of fine-tuned models surpasses GPT-3.5, and rivals GPT-4. However, perturbations to input reasoning can reduce their performance by up to 80 F1 points. Overall, the results suggest that the in-distribution performance of smaller open-source models may potentially rival GPT by incorporating appropriately structured derivation dependencies during training, and highlight a shared weakness between BERT and GPT involving a relative inability to decode indirect references to mathematical entities. We release the full codebase, constructed datasets, and fine-tuned models to encourage future progress in the field.
Gaussian process (GP) regression is a non-parametric, Bayesian framework to approximate complex models. Standard GP regression can lead to an unbounded model in which some points can take infeasible values. We introduce a new GP method that enforces the physical constraints in a probabilistic manner. This GP model is trained by the quantum-inspired Hamiltonian Monte Carlo (QHMC). QHMC is an efficient way to sample from a broad class of distributions. Unlike the standard Hamiltonian Monte Carlo algorithm in which a particle has a fixed mass, QHMC allows a particle to have a random mass matrix with a probability distribution. Introducing the QHMC method to the inequality and monotonicity constrained GP regression in the probabilistic sense, our approach improves the accuracy and reduces the variance in the resulting GP model. According to our experiments on several datasets, the proposed approach serves as an efficient method as it accelerates the sampling process while maintaining the accuracy, and it is applicable to high dimensional problems.
We give an operational definition of information-theoretic resources within a given multipartite classical or quantum correlation. We present our causal model that serves as the source coding side of this correlation and introduce a novel concept of resource rate. We argue that, beyond classical secrecy, additional resources exist that are useful for the security of distributed computing problems, which can be captured by the resource rate. Furthermore, we establish a relationship between resource rate and an extension of Shannon's logarithmic information measure, namely, total correlation. Subsequently, we present a novel quantum secrecy monotone and investigate a quantum hybrid key distribution system as an extension of our causal model. Finally, we discuss some connections to optimal transport (OT) problem.
Digital twins (DTs), which are virtual environments that simulate, predict, and optimize the performance of their physical counterparts, are envisioned to be essential technologies for advancing next-generation wireless networks. While DTs have been studied extensively for wireless networks, their use in conjunction with autonomous vehicles with programmable mobility remains relatively under-explored. In this paper, we study DTs used as a development environment to design, deploy, and test artificial intelligence (AI) techniques that use real-time observations, e.g. radio key performance indicators, for vehicle trajectory and network optimization decisions in an autonomous vehicle networks (AVN). We first compare and contrast the use of simulation, digital twin (software in the loop (SITL)), sandbox (hardware-in-the-loop (HITL)), and physical testbed environments for their suitability in developing and testing AI algorithms for AVNs. We then review various representative use cases of DTs for AVN scenarios. Finally, we provide an example from the NSF AERPAW platform where a DT is used to develop and test AI-aided solutions for autonomous unmanned aerial vehicles for localizing a signal source based solely on link quality measurements. Our results in the physical testbed show that SITL DTs, when supplemented with data from real-world (RW) measurements and simulations, can serve as an ideal environment for developing and testing innovative AI solutions for AVNs.
We present a study of surrogate losses and algorithms for the general problem of learning to defer with multiple experts. We first introduce a new family of surrogate losses specifically tailored for the multiple-expert setting, where the prediction and deferral functions are learned simultaneously. We then prove that these surrogate losses benefit from strong $H$-consistency bounds. We illustrate the application of our analysis through several examples of practical surrogate losses, for which we give explicit guarantees. These loss functions readily lead to the design of new learning to defer algorithms based on their minimization. While the main focus of this work is a theoretical analysis, we also report the results of several experiments on SVHN and CIFAR-10 datasets.