This paper proposes a methodology for generating and perturbing detailed derivations of equations at scale, aided by a symbolic engine, to evaluate the generalisability of Transformers to out-of-distribution mathematical reasoning problems. Instantiating the framework in the context of sequence classification tasks, we compare the capabilities of GPT-4, GPT-3.5, and a canon of fine-tuned BERT models, exploring the relationship between specific operators and generalisation failure via the perturbation of reasoning aspects such as symmetry and variable surface forms. Surprisingly, our empirical evaluation reveals that the average in-distribution performance of fine-tuned models surpasses GPT-3.5, and rivals GPT-4. However, perturbations to input reasoning can reduce their performance by up to 80 F1 points. Overall, the results suggest that the in-distribution performance of smaller open-source models may potentially rival GPT by incorporating appropriately structured derivation dependencies during training, and highlight a shared weakness between BERT and GPT involving a relative inability to decode indirect references to mathematical entities. We release the full codebase, constructed datasets, and fine-tuned models to encourage future progress in the field.
This paper presents an efficient algorithm for the approximation of the rank-one convex hull in the context of nonlinear solid mechanics. It is based on hierarchical rank-one sequences and simultaneously provides first and second derivative information essential for the calculation of mechanical stresses and the computational minimization of discretized energies. For materials, whose microstructure can be well approximated in terms of laminates and where each laminate stage achieves energetic optimality with respect to the current stage, the approximate envelope coincides with the rank-one convex envelope. Although the proposed method provides only an upper bound for the rank-one convex hull, a careful examination of the resulting constraints shows a decent applicability in mechanical problems. Various aspects of the algorithm are discussed, including the restoration of rotational invariance, microstructure reconstruction, comparisons with other semi-convexification algorithms, and mesh independency. Overall, this paper demonstrates the efficiency of the algorithm for both, well-established mathematical benchmark problems as well as nonconvex isotropic finite-strain continuum damage models in two and three dimensions. Thereby, for the first time, a feasible concurrent numerical relaxation is established for an incremental, dissipative large-strain model with relevant applications in engineering problems.
Scalable surrogate models enable efficient emulation of computer models (or simulators), particularly when dealing with large ensembles of runs. While Gaussian Process (GP) models are commonly employed for emulation, they face limitations in scaling to truly large datasets. Furthermore, when dealing with dense functional output, such as spatial or time-series data, additional complexities arise, requiring careful handling to ensure fast emulation. This work presents a highly scalable emulator for functional data, building upon the works of Kennedy and O'Hagan (2001) and Higdon et al. (2008), while incorporating the local approximate Gaussian Process framework proposed by Gramacy and Apley (2015). The emulator utilizes global GP lengthscale parameter estimates to scale the input space, leading to a substantial improvement in prediction speed. We demonstrate that our fast approximation-based emulator can serve as a viable alternative to the methods outlined in Higdon et al. (2008) for functional response, while drastically reducing computational costs. The proposed emulator is applied to quickly calibrate the multiphysics continuum hydrodynamics simulator FLAG with a large ensemble of 20000 runs. The methods presented are implemented in the R package FlaGP.
This paper contributes a new approach for distributional reinforcement learning which elucidates a clean separation of transition structure and reward in the learning process. Analogous to how the successor representation (SR) describes the expected consequences of behaving according to a given policy, our distributional successor measure (SM) describes the distributional consequences of this behaviour. We formulate the distributional SM as a distribution over distributions and provide theory connecting it with distributional and model-based reinforcement learning. Moreover, we propose an algorithm that learns the distributional SM from data by minimizing a two-level maximum mean discrepancy. Key to our method are a number of algorithmic techniques that are independently valuable for learning generative models of state. As an illustration of the usefulness of the distributional SM, we show that it enables zero-shot risk-sensitive policy evaluation in a way that was not previously possible.
We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates. Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads. These theoretical insights are validated experimentally and offer natural suggestions for alternative architectures.
In knowledge graph construction, a challenging issue is how to extract complex (e.g., overlapping) entities and relationships from a small amount of unstructured historical data. The traditional pipeline methods are to divide the extraction into two separate subtasks, which misses the potential interaction between the two subtasks and may lead to error propagation. In this work, we propose an effective cascade dual-decoder method to extract overlapping relational triples, which includes a text-specific relation decoder and a relation-corresponded entity decoder. Our approach is straightforward and it includes a text-specific relation decoder and a relation-corresponded entity decoder. The text-specific relation decoder detects relations from a sentence at the text level. That is, it does this according to the semantic information of the whole sentence. For each extracted relation, which is with trainable embedding, the relation-corresponded entity decoder detects the corresponding head and tail entities using a span-based tagging scheme. In this way, the overlapping triple problem can be tackled naturally. We conducted experiments on a real-world open-pit mine dataset and two public datasets to verify the method's generalizability. The experimental results demonstrate the effectiveness and competitiveness of our proposed method and achieve better F1 scores under strict evaluation metrics. Our implementation is available at //github.com/prastunlp/DualDec.
Neural network-based approaches have recently shown significant promise in solving partial differential equations (PDEs) in science and engineering, especially in scenarios featuring complex domains or the incorporation of empirical data. One advantage of the neural network method for PDEs lies in its automatic differentiation (AD), which necessitates only the sample points themselves, unlike traditional finite difference (FD) approximations that require nearby local points to compute derivatives. In this paper, we quantitatively demonstrate the advantage of AD in training neural networks. The concept of truncated entropy is introduced to characterize the training property. Specifically, through comprehensive experimental and theoretical analyses conducted on random feature models and two-layer neural networks, we discover that the defined truncated entropy serves as a reliable metric for quantifying the residual loss of random feature models and the training speed of neural networks for both AD and FD methods. Our experimental and theoretical analyses demonstrate that, from a training perspective, AD outperforms FD in solving partial differential equations.
We study the matrix denoising problem of estimating the singular vectors of a rank-$1$ signal corrupted by noise with both column and row correlations. Existing works are either unable to pinpoint the exact asymptotic estimation error or, when they do so, the resulting approaches (e.g., based on whitening or singular value shrinkage) remain vastly suboptimal. On top of this, most of the literature has focused on the special case of estimating the left singular vector of the signal when the noise only possesses row correlation (one-sided heteroscedasticity). In contrast, our work establishes the information-theoretic and algorithmic limits of matrix denoising with doubly heteroscedastic noise. We characterize the exact asymptotic minimum mean square error, and design a novel spectral estimator with rigorous optimality guarantees: under a technical condition, it attains positive correlation with the signals whenever information-theoretically possible and, for one-sided heteroscedasticity, it also achieves the Bayes-optimal error. Numerical experiments demonstrate the significant advantage of our theoretically principled method with the state of the art. The proofs draw connections with statistical physics and approximate message passing, departing drastically from standard random matrix theory techniques.
This paper studies a variant of the rate-distortion problem motivated by task-oriented semantic communication and distributed learning problems, where $M$ correlated sources are independently encoded for a central decoder. The decoder has access to a correlated side information in addition to the messages received from the encoders, and aims to recover a latent random variable correlated with the sources observed by the encoders within a given distortion constraint rather than recovering the sources themselves. We provide bounds on the rate-distortion region for this scenario in general, and characterize the rate-distortion function exactly when the sources are conditionally independent given the side information.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.