Changes in the data distribution at test time can have deleterious effects on the performance of predictive models $p(y|x)$. We consider situations where there are additional meta-data labels (such as group labels), denoted by $z$, that can account for such changes in the distribution. In particular, we assume that the prior distribution $p(y, z)$, which models the dependence between the class label $y$ and the "nuisance" factors $z$, may change across domains, either due to a change in the correlation between these terms, or a change in one of their marginals. However, we assume that the generative model for features $p(x|y,z)$ is invariant across domains. We note that this corresponds to an expanded version of the widely used "label shift" assumption, where the labels now also include the nuisance factors $z$. Based on this observation, we propose a test-time label shift correction that adapts to changes in the joint distribution $p(y, z)$ using EM applied to unlabeled samples from the target domain distribution, $p_t(x)$. Importantly, we are able to avoid fitting a generative model $p(x|y, z)$, and merely need to reweight the outputs of a discriminative model $p_s(y, z|x)$ trained on the source distribution. We evaluate our method, which we call "Test-Time Label-Shift Adaptation" (TTLSA), on several standard image and text datasets, as well as the CheXpert chest X-ray dataset, and show that it improves performance over methods that target invariance to changes in the distribution, as well as baseline empirical risk minimization methods. Code for reproducing experiments is available at //github.com/nalzok/test-time-label-shift .
Deep learning algorithms have driven expressive progress in many complex tasks. The loss function is a core component of deep learning techniques, guiding the learning process of neural networks. This paper contributes by introducing a consistency loss for visual odometry with deep learning-based approaches. The motion consistency loss explores repeated motions that appear in consecutive overlapped video clips. Experimental results show that our approach increased the performance of a model on the KITTI odometry benchmark.
Symmetries of input and latent vectors have provided valuable insights for disentanglement learning in VAEs.However, only a few works were proposed as an unsupervised method, and even these works require known factor information in training data. We propose a novel method, Composite Factor-Aligned Symmetry Learning (CFASL), which is integrated into VAEs for learning symmetry-based disentanglement in unsupervised learning without any knowledge of the dataset factor information.CFASL incorporates three novel features for learning symmetry-based disentanglement: 1) Injecting inductive bias to align latent vector dimensions to factor-aligned symmetries within an explicit learnable symmetry codebook 2) Learning a composite symmetry to express unknown factors change between two random samples by learning factor-aligned symmetries within the codebook 3) Inducing group equivariant encoder and decoder in training VAEs with the two conditions. In addition, we propose an extended evaluation metric for multi-factor changes in comparison to disentanglement evaluation in VAEs. In quantitative and in-depth qualitative analysis, CFASL demonstrates a significant improvement of disentanglement in single-factor change, and multi-factor change conditions compared to state-of-the-art methods.
Detecting complex patterns in large volumes of event logs has diverse applications in various domains, such as business processes and fraud detection. Existing systems like ELK are commonly used to tackle this challenge, but their performance deteriorates for large patterns, while they suffer from limitations in terms of expressiveness and explanatory capabilities for their responses. In this work, we propose a solution that integrates a Complex Event Processing (CEP) engine into a broader query processsor on top of a decoupled storage infrastructure containing inverted indices of log events. The results demonstrate that our system excels in scalability and robustness, particularly in handling complex queries. Notably, our proposed system delivers responses for large complex patterns within seconds, while ELK experiences timeouts after 10 minutes. It also significantly outperforms solutions relying on FlinkCEP and executing MATCH_RECOGNIZE SQL queries.
Out-of-distribution (OOD) detection is a crucial part of deploying machine learning models safely. It has been extensively studied with a plethora of methods developed in the literature. This problem is tackled with an OOD score computation, however, previous methods compute the OOD scores with limited usage of the in-distribution dataset. For instance, the OOD scores are computed with information from a small portion of the in-distribution data. Furthermore, these methods encode images with a neural image encoder. The robustness of these methods is rarely checked with respect to image encoders of different training methods and architectures. In this work, we introduce the diffusion process into the OOD task. The diffusion model integrates information on the whole training set into the predicted noise vectors. What's more, we deduce a closed-form solution for the noise vector (stable point). Then the noise vector is converted into our OOD score, we test both the deep model predicted noise vector and the closed-form noise vector on the OOD benchmarks \cite{openood}. Our method outperforms previous OOD methods across all types of image encoders (Table. \ref{main}). A $3.5\%$ performance gain is achieved with the MAE-based image encoder. Moreover, we studied the robustness of OOD methods by applying different types of image encoders. Some OOD methods failed to generalize well when switching image encoders from ResNet to Vision Transformers, our method performs exhibits good robustness with all the image encoders.
Modern speech processing systems rely on self-attention. Unfortunately, token mixing with self-attention takes quadratic time in the length of the speech utterance, slowing down inference as well as training and increasing memory consumption. Cheaper alternatives to self-attention for ASR have been developed, but they fail to consistently reach the same level of accuracy. This paper, therefore, proposes a novel linear-time alternative to self-attention. It summarises an utterance with the mean over vectors for all time steps. This single summary is then combined with time-specific information. We call this method "SummaryMixing". Introducing SummaryMixing in state-of-the-art ASR models makes it feasible to preserve or exceed previous speech recognition performance while lowering the training and inference times by up to 28$\%$ and reducing the memory budget by a factor of two. The benefits of SummaryMixing can also be generalized to other speech-processing tasks, such as speech understanding.
We propose a new framework to design and analyze accelerated methods that solve general monotone equation (ME) problems $F(x)=0$. Traditional approaches include generalized steepest descent methods and inexact Newton-type methods. If $F$ is uniformly monotone and twice differentiable, these methods achieve local convergence rates while the latter methods are globally convergent thanks to line search and hyperplane projection. However, a global rate is unknown for these methods. The variational inequality methods can be applied to yield a global rate that is expressed in terms of $\|F(x)\|$ but these results are restricted to first-order methods and a Lipschitz continuous operator. It has not been clear how to obtain global acceleration using high-order Lipschitz continuity. This paper takes a continuous-time perspective where accelerated methods are viewed as the discretization of dynamical systems. Our contribution is to propose accelerated rescaled gradient systems and prove that they are equivalent to closed-loop control systems. Based on this connection, we establish the properties of solution trajectories. Moreover, we provide a unified algorithmic framework obtained from discretization of our system, which together with two approximation subroutines yields both existing high-order methods and new first-order methods. We prove that the $p^{th}$-order method achieves a global rate of $O(k^{-p/2})$ in terms of $\|F(x)\|$ if $F$ is $p^{th}$-order Lipschitz continuous and the first-order method achieves the same rate if $F$ is $p^{th}$-order strongly Lipschitz continuous. If $F$ is strongly monotone, the restarted versions achieve local convergence with order $p$ when $p \geq 2$. Our discrete-time analysis is largely motivated by the continuous-time analysis and demonstrates the fundamental role that rescaled gradients play in global acceleration for solving ME problems.
Anomaly detection is a challenging task for machine learning algorithms due to the inherent class imbalance. It is costly and time-demanding to manually analyse the observed data, thus usually only few known anomalies if any are available. Inspired by generative models and the analysis of the hidden activations of neural networks, we introduce a novel unsupervised anomaly detection method called DA3D. Here, we use adversarial autoencoders to generate anomalous counterexamples based on the normal data only. These artificial anomalies used during training allow the detection of real, yet unseen anomalies. With our novel generative approach, we transform the unsupervised task of anomaly detection to a supervised one, which is more tractable by machine learning and especially deep learning methods. DA3D surpasses the performance of state-of-the-art anomaly detection methods in a purely data-driven way, where no domain knowledge is required.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.