亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Medical ultrasound (US) is widely used to evaluate and stage vascular diseases, in particular for the preliminary screening program, due to the advantage of being radiation-free. However, automatic segmentation of small tubular structures (e.g., the ulnar artery) from cross-sectional US images is still challenging. To address this challenge, this paper proposes the DopUS-Net and a vessel re-identification module that leverage the Doppler effect to enhance the final segmentation result. Firstly, the DopUS-Net combines the Doppler images with B-mode images to increase the segmentation accuracy and robustness of small blood vessels. It incorporates two encoders to exploit the maximum potential of the Doppler signal and recurrent neural network modules to preserve sequential information. Input to the first encoder is a two-channel duplex image representing the combination of the grey-scale Doppler and B-mode images to ensure anatomical spatial correctness. The second encoder operates on the pure Doppler images to provide a region proposal. Secondly, benefiting from the Doppler signal, this work first introduces an online artery re-identification module to qualitatively evaluate the real-time segmentation results and automatically optimize the probe pose for enhanced Doppler images. This quality-aware module enables the closed-loop control of robotic screening to further improve the confidence and robustness of image segmentation. The experimental results demonstrate that the proposed approach with the re-identification process can significantly improve the accuracy and robustness of the segmentation results (dice score: from 0:54 to 0:86; intersection over union: from 0:47 to 0:78).

相關內容

This paper investigates the performance of diffusion models for video anomaly detection (VAD) within the most challenging but also the most operational scenario in which the data annotations are not used. As being sparse, diverse, contextual, and often ambiguous, detecting abnormal events precisely is a very ambitious task. To this end, we rely only on the information-rich spatio-temporal data, and the reconstruction power of the diffusion models such that a high reconstruction error is utilized to decide the abnormality. Experiments performed on two large-scale video anomaly detection datasets demonstrate the consistent improvement of the proposed method over the state-of-the-art generative models while in some cases our method achieves better scores than the more complex models. This is the first study using a diffusion model and examining its parameters' influence to present guidance for VAD in surveillance scenarios.

This paper proposes a unified approach for dynamic modeling and simulations of general tensegrity structures with rigid bars and rigid bodies of arbitrary shapes. The natural coordinates are adopted as a non-minimal description in terms of different combinations of basic points and base vectors to resolve the heterogeneity between rigid bodies and rigid bars in three-dimensional space. This leads to a set of differential-algebraic equations with a constant mass matrix and free from trigonometric functions. Formulations for linearized dynamics are derived to enable modal analysis around static equilibrium. For numerical analysis of nonlinear dynamics, we derive a modified symplectic integration scheme which yields realistic results for long-time simulations, and accommodates non-conservative forces as well as boundary conditions. Numerical examples demonstrate the efficacy of the proposed approach for dynamic simulations of Class-1-to-$k$ general tensegrity structures under complex situations, including dynamic external loads, cable-based deployments, and moving boundaries. The novel tensegrity structures also exemplify new ways to create multi-functional structures.

This technical report describes our QuAVF@NTU-NVIDIA submission to the Ego4D Talking to Me (TTM) Challenge 2023. Based on the observation from the TTM task and the provided dataset, we propose to use two separate models to process the input videos and audio. By doing so, we can utilize all the labeled training data, including those without bounding box labels. Furthermore, we leverage the face quality score from a facial landmark prediction model for filtering noisy face input data. The face quality score is also employed in our proposed quality-aware fusion for integrating the results from two branches. With the simple architecture design, our model achieves 67.4% mean average precision (mAP) on the test set, which ranks first on the leaderboard and outperforms the baseline method by a large margin. Code is available at: //github.com/hsi-che-lin/Ego4D-QuAVF-TTM-CVPR23

The advancement of new digital image sensors has enabled the design of exposure multiplexing schemes where a single image capture can have multiple exposures and conversion gains in an interlaced format, similar to that of a Bayer color filter array. In this paper, we ask the question of how to design such multiplexing schemes for adaptive high-dynamic range (HDR) imaging where the multiplexing scheme can be updated according to the scenes. We present two new findings. (i) We address the problem of design optimality. We show that given a multiplex pattern, the conventional optimality criteria based on the input/output-referred signal-to-noise ratio (SNR) of the independently measured pixels can lead to flawed decisions because it cannot encapsulate the location of the saturated pixels. We overcome the issue by proposing a new concept known as the spatially varying exposure risk (SVE-Risk) which is a pseudo-idealistic quantification of the amount of recoverable pixels. We present an efficient enumeration algorithm to select the optimal multiplex patterns. (ii) We report a design universality observation that the design of the multiplex pattern can be decoupled from the image reconstruction algorithm. This is a significant departure from the recent literature that the multiplex pattern should be jointly optimized with the reconstruction algorithm. Our finding suggests that in the context of exposure multiplexing, an end-to-end training may not be necessary.

Approaching the era of ubiquitous computing, human motion sensing plays a crucial role in smart systems for decision making, user interaction, and personalized services. Extensive research has been conducted on human tracking, pose estimation, gesture recognition, and activity recognition, which are predominantly based on cameras in traditional methods. However, the intrusive nature of cameras limits their use in smart home applications. To address this, mmWave radars have gained popularity due to their privacy-friendly features. In this work, we propose \textit{milliFlow}, a novel deep learning method for scene flow estimation as a complementary motion information for mmWave point cloud, serving as an intermediate level of features and directly benefiting downstream human motion sensing tasks. Experimental results demonstrate the superior performance of our method with an average 3D endpoint error of 4.6cm, significantly surpassing the competing approaches. Furthermore, by incorporating scene flow information, we achieve remarkable improvements in human activity recognition, human parsing, and human body part tracking. To foster further research in this area, we provide our codebase and dataset for open access.

We offer a method for one-shot mask-guided image synthesis that allows controlling manipulations of a single image by inverting a quasi-robust classifier equipped with strong regularizers. Our proposed method, entitled MAGIC, leverages structured gradients from a pre-trained quasi-robust classifier to better preserve the input semantics while preserving its classification accuracy, thereby guaranteeing credibility in the synthesis. Unlike current methods that use complex primitives to supervise the process or use attention maps as a weak supervisory signal, MAGIC aggregates gradients over the input, driven by a guide binary mask that enforces a strong, spatial prior. MAGIC implements a series of manipulations with a single framework achieving shape and location control, intense non-rigid shape deformations, and copy/move operations in the presence of repeating objects and gives users firm control over the synthesis by requiring to simply specify binary guide masks. Our study and findings are supported by various qualitative comparisons with the state-of-the-art on the same images sampled from ImageNet and quantitative analysis using machine perception along with a user survey of 100+ participants that endorse our synthesis quality. Project page at //mozhdehrouhsedaghat.github.io/magic.html. Code is available at //github.com/mozhdehrouhsedaghat/magic

Topology optimization is a powerful tool utilized in various fields for structural design. However, its application has primarily been restricted to static or passively moving objects, mainly focusing on hard materials with limited deformations and contact capabilities. Designing soft and actively moving objects, such as soft robots equipped with actuators, poses challenges due to simulating dynamics problems involving large deformations and intricate contact interactions. Moreover, the optimal structure depends on the object's motion, necessitating a simultaneous design approach. To address these challenges, we propose "4D topology optimization," an extension of density-based topology optimization that incorporates the time dimension. This enables the simultaneous optimization of both the structure and self-actuation of soft bodies for specific dynamic tasks. Our method utilizes multi-indexed and hierarchized density variables distributed over the spatiotemporal design domain, representing the material layout, actuator layout, and time-varying actuation. These variables are efficiently optimized using gradient-based methods. Forward and backward simulations of soft bodies are done using the material point method, a Lagrangian-Eulerian hybrid approach, implemented on a recent automatic differentiation framework. We present several numerical examples of self-actuating soft body designs aimed at achieving locomotion, posture control, and rotation tasks. The results demonstrate the effectiveness of our method in successfully designing soft bodies with complex structures and biomimetic movements, benefiting from its high degree of design freedom.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.

北京阿比特科技有限公司