Human-centered systems of systems such as social networks, Internet of Things, or healthcare systems are growingly becoming major facets of modern life. Realistic models of human behavior in such systems play a significant role in their accurate modeling and prediction. Yet, human behavior under uncertainty often violates the predictions by the conventional probabilistic models. Recently, quantum-like decision theories have shown a considerable potential to explain the contradictions in human behavior by applying quantum probability. But providing a quantum-like decision theory that could predict, rather than describe the current, state of human behavior is still one of the unsolved challenges. The main novelty of our approach is introducing an entangled Bayesian network inspired by the entanglement concept in quantum information theory, in which each human is a part of the entire society. Accordingly, society's effect on the dynamic evolution of the decision-making process, which is less often considered in decision theories, is modeled by the entanglement measures. The proposed predictive entangled quantum-like Bayesian network (PEQBN) is evaluated on 22 experimental tasks. Results confirm that PEQBN provides more realistic predictions of human decisions under uncertainty, when compared with classical Bayesian networks and three recent quantum-like approaches.
Unlike traditional time series, the action sequences of human decision making usually involve many cognitive processes such as beliefs, desires, intentions, and theory of mind, i.e., what others are thinking. This makes predicting human decision-making challenging to be treated agnostically to the underlying psychological mechanisms. We propose here to use a recurrent neural network architecture based on long short-term memory networks (LSTM) to predict the time series of the actions taken by human subjects engaged in gaming activity, the first application of such methods in this research domain. In this study, we collate the human data from 8 published literature of the Iterated Prisoner's Dilemma comprising 168,386 individual decisions and post-process them into 8,257 behavioral trajectories of 9 actions each for both players. Similarly, we collate 617 trajectories of 95 actions from 10 different published studies of Iowa Gambling Task experiments with healthy human subjects. We train our prediction networks on the behavioral data and demonstrate a clear advantage over the state-of-the-art methods in predicting human decision-making trajectories in both the single-agent scenario of the Iowa Gambling Task and the multi-agent scenario of the Iterated Prisoner's Dilemma. Moreover, we observe that the weights of the LSTM networks modeling the top performers tend to have a wider distribution compared to poor performers, as well as a larger bias, which suggest possible interpretations for the distribution of strategies adopted by each group.
In the coming years, quantum networks will allow quantum applications to thrive thanks to the new opportunities offered by end-to-end entanglement of qubits on remote hosts via quantum repeaters. On a geographical scale, this will lead to the dawn of the Quantum Internet. While a full-blown deployment is yet to come, the research community is already working on a variety of individual enabling technologies and solutions. In this paper, with the guidance of extensive simulations, we take a broader view and investigate the problems of Quality of Service (QoS) and provisioning in the context of quantum networks, which are very different from their counterparts in classical data networks due to some of their fundamental properties. Our work leads the way towards a new class of studies that will allow the research community to better understand the challenges of quantum networks and their potential commercial exploitation.
In the upcoming 6G era, existing terrestrial networks have evolved toward space-air-ground integrated networks (SAGIN), providing ultra-high data rates, seamless network coverage, and ubiquitous intelligence for communications of applications and services. However, conventional communications in SAGIN still face data confidentiality issues. Fortunately, the concept of Quantum Key Distribution (QKD) over SAGIN is able to provide information-theoretic security for secure communications in SAGIN with quantum cryptography. Therefore, in this paper, we propose the quantum-secured SAGIN which is feasible to achieve proven secure communications using quantum mechanics to protect data channels between space, air, and ground nodes. Moreover, we propose a universal QKD service provisioning framework to minimize the cost of QKD services under the uncertainty and dynamics of communications in quantum-secured SAGIN. In this framework, fiber-based QKD services are deployed in passive optical networks with the advantages of low loss and high stability. Moreover, the widely covered and flexible satellite- and UAV-based QKD services are provisioned as a supplement during the real-time data transmission phase. Finally, to examine the effectiveness of the proposed concept and framework, a case study of quantum-secured SAGIN in the Metaverse is conducted where uncertain and dynamic factors of the secure communications in Metaverse applications are effectively resolved in the proposed framework.
Network-aware cascade size prediction aims to predict the final reposted number of user-generated information via modeling the propagation process in social networks. Estimating the user's reposting probability by social influence, namely state activation plays an important role in the information diffusion process. Therefore, Graph Neural Networks (GNN), which can simulate the information interaction between nodes, has been proved as an effective scheme to handle this prediction task. However, existing studies including GNN-based models usually neglect a vital factor of user's preference which influences the state activation deeply. To that end, we propose a novel framework to promote cascade size prediction by enhancing the user preference modeling according to three stages, i.e., preference topics generation, preference shift modeling, and social influence activation. Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate. Extensive experiments on two large-scale real-world datasets have clearly demonstrated the effectiveness of our proposed model compared to state-of-the-art baselines.
The accurate diagnosis and molecular profiling of colorectal cancers are critical for planning the best treatment options for patients. Microsatellite instability (MSI) or mismatch repair (MMR) status plays a vital role inappropriate treatment selection, has prognostic implications and is used to investigate the possibility of patients having underlying genetic disorders (Lynch syndrome). NICE recommends that all CRC patients should be offered MMR/microsatellite instability (MSI) testing. Immunohistochemistry is commonly used to assess MMR status with subsequent molecular testing performed as required. This incurs significant extra costs and requires additional resources. The introduction of automated methods that can predict MSI or MMR status from a target image could substantially reduce the cost associated with MMR testing. Unlike previous studies on MSI prediction involving training a CNN using coarse labels (Microsatellite Instable vs Microsatellite Stable), we have utilised fine-grain MMR labels for training purposes. In this paper, we present our work on predicting MSI status in a two-stage process using a single target slide either stained with CK8/18 or H\&E. First, we trained a multi-headed convolutional neural network model where each head was responsible for predicting one of the MMR protein expressions. To this end, we performed the registration of MMR stained slides to the target slide as a pre-processing step. In the second stage, statistical features computed from the MMR prediction maps were used for the final MSI prediction. Our results demonstrated that MSI classification can be improved by incorporating fine-grained MMR labels in comparison to the previous approaches in which only coarse labels were utilised.
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives. In HCI, design optimization problems are often exceedingly complex, involving multiple objectives and expensive empirical evaluations. Model-based computational design algorithms assist designers by generating design examples during design, however they assume a model of the interaction domain. Black box methods for assistance, on the other hand, can work with any design problem. However, virtually all empirical studies of this human-in-the-loop approach have been carried out by either researchers or end-users. The question stands out if such methods can help designers in realistic tasks. In this paper, we study Bayesian optimization as an algorithmic method to guide the design optimization process. It operates by proposing to a designer which design candidate to try next, given previous observations. We report observations from a comparative study with 40 novice designers who were tasked to optimize a complex 3D touch interaction technique. The optimizer helped designers explore larger proportions of the design space and arrive at a better solution, however they reported lower agency and expressiveness. Designers guided by an optimizer reported lower mental effort but also felt less creative and less in charge of the progress. We conclude that human-in-the-loop optimization can support novice designers in cases where agency is not critical.
Recent decades, the emergence of numerous novel algorithms makes it a gimmick to propose an intelligent optimization system based on metaphor, and hinders researchers from exploring the essence of search behavior in algorithms. However, it is difficult to directly discuss the search behavior of an intelligent optimization algorithm, since there are so many kinds of intelligent schemes. To address this problem, an intelligent optimization system is regarded as a simulated physical optimization system in this paper. The dynamic search behavior of such a simplified physical optimization system are investigated with quantum theory. To achieve this goal, the Schroedinger equation is employed as the dynamics equation of the optimization algorithm, which is used to describe dynamic search behaviours in the evolution process with quantum theory. Moreover, to explore the basic behaviour of the optimization system, the optimization problem is assumed to be decomposed and approximated. Correspondingly, the basic search behaviour is derived, which constitutes the basic iterative process of a simple optimization system. The basic iterative process is compared with some classical bare-bones schemes to verify the similarity of search behavior under different metaphors. The search strategies of these bare bones algorithms are analyzed through experiments.
After spending 9 years in Quantum Computing and given the impending timeline of developing good quality quantum processing units, it is the moment to rethink the approach to advance quantum computing research. Rather than waiting for quantum hardware technologies to mature, we need to start assessing in tandem the impact of the occurrence of quantum computing in various scientific fields. However, for this purpose, we need to use a complementary but quite different approach than proposed by the NISQ vision, which is heavily focused on and burdened by the engineering challenges. That is why we propose and advocate the PISQ-approach: Perfect Intermediate-Scale Quantum computing based on the already known concept of perfect qubits. This will allow researchers to focus much more on the development of new applications by defining the algorithms in terms of perfect qubits and evaluating them on quantum computing simulators that are executed on supercomputers. It is not a long-term solution but it will allow universities to currently develop research on quantum logic and algorithms and companies can already start developing their internal know-how on quantum solutions.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.
Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.