Mobility plays a fundamental role in modern cities. How citizens experience the urban environment, access city core services, and participate in city life, strongly depends on its mobility organization and efficiency. The challenges that municipalities face are very ambitious: on the one hand, administrators must guarantee their citizens the right to mobility and to easily access local services; on the other hand, they need to minimize the economic, social, and environmental costs of the mobility system. Municipalities are increasingly facing problems of traffic congestion, road safety, energy dependency and air pollution, and therefore encouraging a shift towards sustainable mobility habits based on active mobility is of central importance. Active modes, such as cycling, should be particularly encouraged, especially for local recurrent journeys (e.g., home--to--school, home--to--work). In this context, addressing and mitigating commuter-generated traffic requires engaging public and private stakeholders through innovative and collaborative approaches that focus not only on supply (e.g., roads and vehicles) but also on transportation demand management. In this paper, we present an end-to-end solution, called Play&Go Corporate, for enabling urban cyclability and its concrete exploitation in the realization of a home-to-work sustainable mobility campaign (i.e., Bike2Work) targeting employees of public and private companies. To evaluate the effectiveness of the proposed solution we developed two analyses: the first to carefully analyze the user experience and any behaviour change related to the Bike2Work mobility campaign, and the second to demonstrate how exploiting the collected data we can potentially inform and guide the involved municipality (i.e., Ferrara, a city in Northern Italy) in improving urban cyclability.
We present an analysis of large-scale load balancing systems, where the processing time distribution of tasks depends on both the task and server types. Our study focuses on the asymptotic regime, where the number of servers and task types tend to infinity in proportion. In heterogeneous environments, commonly used load balancing policies such as Join Fastest Idle Queue and Join Fastest Shortest Queue exhibit poor performance and even shrink the stability region. Interestingly, prior to this work, finding a scalable policy with a provable performance guarantee in this setup remained an open question. To address this gap, we propose and analyze two asymptotically delay-optimal dynamic load balancing policies. The first policy efficiently reserves the processing capacity of each server for ``good" tasks and routes tasks using the vanilla Join Idle Queue policy. The second policy, called the speed-priority policy, significantly increases the likelihood of assigning tasks to the respective ``good" servers capable of processing them at high speeds. By leveraging a framework inspired by the graphon literature and employing the mean-field method and stochastic coupling arguments, we demonstrate that both policies achieve asymptotic zero queuing. Specifically, as the system scales, the probability of a typical task being assigned to an idle server approaches 1.
The growing demand for data and AI-generated digital goods, such as personalized written content and artwork, necessitates effective pricing and feedback mechanisms that account for uncertain utility and costly production. Motivated by these developments, this study presents a novel mechanism design addressing a general repeated-auction setting where the utility derived from a sold good is revealed post-sale. The mechanism's novelty lies in using pairwise comparisons for eliciting information from the bidder, arguably easier for humans than assigning a numerical value. Our mechanism chooses allocations using an epsilon-greedy strategy and relies on pairwise comparisons between realized utility from allocated goods and an arbitrary value, avoiding the learning-to-bid problem explored in previous work. We prove this mechanism to be asymptotically truthful, individually rational, and welfare and revenue maximizing. The mechanism's relevance is broad, applying to any setting with made-to-order goods of variable quality. Experimental results on multi-label toxicity annotation data, an example of negative utilities, highlight how our proposed mechanism could enhance social welfare in data auctions. Overall, our focus on human factors contributes to the development of more human-aware and efficient mechanism design.
As an increasing number of businesses becomes powered by machine-learning, inference becomes a core operation, with a growing trend to be offered as a service. In this context, the inference task must meet certain service-level objectives (SLOs), such as high throughput and low latency. However, these targets can be compromised by interference caused by long- or short-lived co-located tasks. Prior works focus on the generic problem of co-scheduling to mitigate the effect of interference on the performance-critical task. In this work, we focus on inference pipelines and propose ODIN, a technique to mitigate the effect of interference on the performance of the inference task, based on the online scheduling of the pipeline stages. Our technique detects interference online and automatically re-balances the pipeline stages to mitigate the performance degradation of the inference task. We demonstrate that ODIN successfully mitigates the effect of interference, sustaining the latency and throughput of CNN inference, and outperforms the least-loaded scheduling (LLS), a common technique for interference mitigation. Additionally, it is effective in maintaining service-level objectives for inference, and it is scalable to large network models executing on multiple processing elements.
Requirements engineering (RE) plays a crucial role in developing software systems by bridging the gap between stakeholders' needs and system specifications. However, effective communication and elicitation of stakeholder requirements can be challenging, as traditional RE methods often overlook emotional cues. This paper introduces a multi-modal emotion recognition platform (MEmoRE) to enhance the requirements engineering process by capturing and analyzing the emotional cues of stakeholders in real-time. MEmoRE leverages state-of-the-art emotion recognition techniques, integrating facial expression, vocal intonation, and textual sentiment analysis to comprehensively understand stakeholder emotions. This multi-modal approach ensures the accurate and timely detection of emotional cues, enabling requirements engineers to tailor their elicitation strategies and improve overall communication with stakeholders. We further intend to employ our platform for later RE stages, such as requirements reviews and usability testing. By integrating multi-modal emotion recognition into requirements engineering, we aim to pave the way for more empathetic, effective, and successful software development processes. We performed a preliminary evaluation of our platform. This paper reports on the platform design, preliminary evaluation, and future development plan as an ongoing project.
Companies' adoption of artificial intelligence (AI) is increasingly becoming an essential element of business success. However, using AI poses new requirements for companies and their employees, including transparency and comprehensibility of AI systems. The field of Explainable AI (XAI) aims to address these issues. Yet, the current research primarily consists of laboratory studies, and there is a need to improve the applicability of the findings to real-world situations. Therefore, this project report paper provides insights into employees' needs and attitudes towards (X)AI. For this, we investigate employees' perspectives on (X)AI. Our findings suggest that AI and XAI are well-known terms perceived as important for employees. This recognition is a critical first step for XAI to potentially drive successful usage of AI by providing comprehensible insights into AI technologies. In a lessons-learned section, we discuss the open questions identified and suggest future research directions to develop human-centered XAI designs for companies. By providing insights into employees' needs and attitudes towards (X)AI, our project report contributes to the development of XAI solutions that meet the requirements of companies and their employees, ultimately driving the successful adoption of AI technologies in the business context.
Noticing the urgent need to provide tools for fast and user-friendly qualitative analysis of large-scale textual corpora of the modern NLP, we propose to turn to the mature and well-tested methods from the domain of Information Retrieval (IR) - a research field with a long history of tackling TB-scale document collections. We discuss how Pyserini - a widely used toolkit for reproducible IR research can be integrated with the Hugging Face ecosystem of open-source AI libraries and artifacts. We leverage the existing functionalities of both platforms while proposing novel features further facilitating their integration. Our goal is to give NLP researchers tools that will allow them to develop retrieval-based instrumentation for their data analytics needs with ease and agility. We include a Jupyter Notebook-based walk through the core interoperability features, available on GitHub at //github.com/huggingface/gaia. We then demonstrate how the ideas we present can be operationalized to create a powerful tool for qualitative data analysis in NLP. We present GAIA Search - a search engine built following previously laid out principles, giving access to four popular large-scale text collections. GAIA serves a dual purpose of illustrating the potential of methodologies we discuss but also as a standalone qualitative analysis tool that can be leveraged by NLP researchers aiming to understand datasets prior to using them in training. GAIA is hosted live on Hugging Face Spaces - //huggingface.co/spaces/spacerini/gaia.
This application paper explores the potential of using reinforcement learning (RL) to address the demands of Industry 4.0, including shorter time-to-market, mass customization, and batch size one production. Specifically, we present a use case in which the task is to transport and assemble goods through a model factory following predefined rules. Each simulation run involves placing a specific number of goods of random color at the entry point. The objective is to transport the goods to the assembly station, where two rivets are installed in each product, connecting the upper part to the lower part. Following the installation of rivets, blue products must be transported to the exit, while green products are to be transported to storage. The study focuses on the application of reinforcement learning techniques to address this problem and improve the efficiency of the production process.
The recent success of Large Language Models (LLMs) signifies an impressive stride towards artificial general intelligence. They have shown a promising prospect in automatically completing tasks upon user instructions, functioning as brain-like coordinators. The associated risks will be revealed as we delegate an increasing number of tasks to machines for automated completion. A big question emerges: how can we make machines behave responsibly when helping humans automate tasks as personal copilots? In this paper, we explore this question in depth from the perspectives of feasibility, completeness and security. In specific, we present Responsible Task Automation (ResponsibleTA) as a fundamental framework to facilitate responsible collaboration between LLM-based coordinators and executors for task automation with three empowered capabilities: 1) predicting the feasibility of the commands for executors; 2) verifying the completeness of executors; 3) enhancing the security (e.g., the protection of users' privacy). We further propose and compare two paradigms for implementing the first two capabilities. One is to leverage the generic knowledge of LLMs themselves via prompt engineering while the other is to adopt domain-specific learnable models. Moreover, we introduce a local memory mechanism for achieving the third capability. We evaluate our proposed ResponsibleTA on UI task automation and hope it could bring more attentions to ensuring LLMs more responsible in diverse scenarios. The research project homepage is at //task-automation-research.github.io/responsible_task_automation.
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy.
Automated Driving Systems (ADS) have made great achievements in recent years thanks to the efforts from both academia and industry. A typical ADS is composed of multiple modules, including sensing, perception, planning and control, which brings together the latest advances in multiple domains. Despite these achievements, safety assurance of the systems is still of great significance, since the unsafe behavior of ADS can bring catastrophic consequences and unacceptable economic and social losses. Testing is an important approach to system validation for the deployment in practice; in the context of ADS, it is extremely challenging, due to the system complexity and multidisciplinarity. There has been a great deal of literature that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical advances. However, most of these surveys focus on the system-level testing that is performed within software simulators, and thereby ignore the distinct features of individual modules. In this paper, we provide a comprehensive survey on the existing ADS testing literature, which takes into account both module-level and system-level testing. Specifically, we make the following contributions: (1) we build a threat model that reveals the potential safety threats for each module of an ADS; (2) we survey the module-level testing techniques for ADS and highlight the technical differences affected by the properties of the modules; (3) we also survey the system-level testing techniques, but we focus on empirical studies that take a bird's-eye view on the system, the problems due to the collaborations between modules, and the gaps between ADS testing in simulators and real world; (4) we identify the challenges and opportunities in ADS testing, which facilitates the future research in this field.