亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In a large cyber-physical system, a temporal inconsistency of an output value can arise if there is a non-negligible delay between the instant when a sensor value is acquired from the environment and the instant when a setpoint, based on this sensor value, is used in the environment. Such a temporal inconsistency can be the cause of a critical malfunction of the cyber-physical system. This paper presents a solution of this temporal consistency problem that can best be implemented in a time-triggered architecture (TTA). In a TTA, the instants of sensor value acquisition, setpoint calculation, and actuation on the environment are statically configured, and the cyber-physical system implements software and hardware mechanisms to execute the respective actions tightly at these configured instants.

相關內容

Automatic summarization has consistently attracted attention, due to its versatility and wide application in various downstream tasks. Despite its popularity, we find that annotation efforts have largely been disjointed, and have lacked common terminology. Consequently, it is challenging to discover existing resources or identify coherent research directions. To address this, we survey a large body of work spanning 133 datasets in over 100 languages, creating a novel ontology covering sample properties, collection methods and distribution. With this ontology we make key observations, including the lack in accessible high-quality datasets for low-resource languages, and the field's over-reliance on the news domain and on automatically collected distant supervision. Finally, we make available a web interface that allows users to interact and explore our ontology and dataset collection, as well as a template for a summarization data card, which can be used to streamline future research into a more coherent body of work.

We consider the problem of estimating a high-dimensional covariance matrix from a small number of observations when covariates on pairs of variables are available and the variables can have spatial structure. This is motivated by the problem arising in demography of estimating the covariance matrix of the total fertility rate (TFR) of 195 different countries when only 11 observations are available. We construct an estimator for high-dimensional covariance matrices by exploiting information about pairwise covariates, such as whether pairs of variables belong to the same cluster, or spatial structure of the variables, and interactions between the covariates. We reformulate the problem in terms of a mixed effects model. This requires the estimation of only a small number of parameters, which are easy to interpret and which can be selected using standard procedures. The estimator is consistent under general conditions, and asymptotically normal. It works if the mean and variance structure of the data is already specified or if some of the data are missing. We assess its performance under our model assumptions, as well as under model misspecification, using simulations. We find that it outperforms several popular alternatives. We apply it to the TFR dataset and draw some conclusions.

We present a computational formulation for the approximate version of several variational inequality problems, investigating their computational complexity and establishing PPAD-completeness. Examining applications in computational game theory, we specifically focus on two key concepts: resilient Nash equilibrium, and multi-leader-follower games -- domains traditionally known for the absence of general solutions. In the presence of standard assumptions and relaxation techniques, we formulate problem versions for such games that are expressible in terms of variational inequalities, ultimately leading to proofs of PPAD-completeness.

Causal knowledge about the relationships among decision variables and a reward variable in a bandit setting can accelerate the learning of an optimal decision. Current works often assume the causal graph is known, which may not always be available a priori. Motivated by this challenge, we focus on the causal bandit problem in scenarios where the underlying causal graph is unknown and may include latent confounders. While intervention on the parents of the reward node is optimal in the absence of latent confounders, this is not necessarily the case in general. Instead, one must consider a set of possibly optimal arms/interventions, each being a special subset of the ancestors of the reward node, making causal discovery beyond the parents of the reward node essential. For regret minimization, we identify that discovering the full causal structure is unnecessary; however, no existing work provides the necessary and sufficient components of the causal graph. We formally characterize the set of necessary and sufficient latent confounders one needs to detect or learn to ensure that all possibly optimal arms are identified correctly. We also propose a randomized algorithm for learning the causal graph with a limited number of samples, providing a sample complexity guarantee for any desired confidence level. In the causal bandit setup, we propose a two-stage approach. In the first stage, we learn the induced subgraph on ancestors of the reward, along with a necessary and sufficient subset of latent confounders, to construct the set of possibly optimal arms. The regret incurred during this phase scales polynomially with respect to the number of nodes in the causal graph. The second phase involves the application of a standard bandit algorithm, such as the UCB algorithm. We also establish a regret bound for our two-phase approach, which is sublinear in the number of rounds.

The research community has traditionally shown a keen interest in emotion modeling, with a notable emphasis on the detection aspect. In contrast, the exploration of emotion generation has received less attention.This study delves into an existing state-of-the-art emotional chatbot, EmoBot, designed for generating emotions in general-purpose conversations. This research involves a comprehensive examination, including a survey to evaluate EmoBot's proficiency in key dimensions like usability, accuracy, and overall user satisfaction, with a specific focus on fault tolerance. By closely examining the chatbot's operations, we identified some noteworthy shortcomings in the existing model. We propose some solutions designed to address and overcome the identified issues.

We consider the problem of estimating the number of clusters (k) in a dataset. We propose a non-parametric approach to the problem that utilizes similarity graphs to construct a robust statistic that effectively captures similarity information among observations. This graph-based statistic is applicable to datasets of any dimension, is computationally efficient to obtain, and can be paired with any kind of clustering technique. Asymptotic theory is developed to establish the selection consistency of the proposed approach. Simulation studies demonstrate that the graph-based statistic outperforms existing methods for estimating k, especially in the high-dimensional setting. We illustrate its utility on an imaging dataset and an RNA-seq dataset.

Quantum no-cloning theorem gives rise to the intriguing possibility of quantum copy protection where we encode a program or functionality in a quantum state such that a user in possession of k copies cannot create k+1 copies, for any k. Introduced by Aaronson (CCC'09) over a decade ago, copy protection has proven to be notoriously hard to achieve. Previous work has been able to achieve copy-protection for various functionalities only in restricted models: (i) in the bounded collusion setting where k -> k+1 security is achieved for a-priori fixed collusion bound k (in the plain model with the same computational assumptions as ours, by Liu, Liu, Qian, Zhandry [TCC'22]), or, (ii) only k -> 2k security is achieved (relative to a structured quantum oracle, by Aaronson [CCC'09]). In this work, we give the first unbounded collusion-resistant (i.e. multiple-copy secure) copy-protection schemes, answering the long-standing open question of constructing such schemes, raised by multiple previous works starting with Aaronson (CCC'09). More specifically, we obtain the following results. - We construct (i) public-key encryption, (ii) public-key functional encryption, (iii) signature and (iv) pseudorandom function schemes whose keys are copy-protected against unbounded collusions in the plain model (i.e. without any idealized oracles), assuming (post-quantum) subexponentially secure iO and LWE. - We show that any unlearnable functionality can be copy-protected against unbounded collusions, relative to a classical oracle. - As a corollary of our results, we rule out the existence of hyperefficient quantum shadow tomography, * even given non-black-box access to the measurements, assuming subexponentially secure iO and LWE, or, * unconditionally relative to a quantumly accessible classical oracle, and hence answer an open question by Aaronson (STOC'18).

This study investigates the potential of WebAssembly as a more secure and efficient alternative to Linux containers for executing untrusted code in cloud computing with Kubernetes. Specifically, it evaluates the security and performance implications of this shift. Security analyses demonstrate that both Linux containers and WebAssembly have attack surfaces when executing untrusted code, but WebAssembly presents a reduced attack surface due to an additional layer of isolation. The performance analysis further reveals that while WebAssembly introduces overhead, particularly in startup times, it could be negligible in long-running computations. However, WebAssembly enhances the core principle of containerization, offering better security through isolation and platform-agnostic portability compared to Linux containers. This research demonstrates that WebAssembly is not a silver bullet for all security concerns or performance requirements in a Kubernetes environment, but typical attacks are less likely to succeed and the performance loss is relatively small.

Classical machine learning implicitly assumes that labels of the training data are sampled from a clean distribution, which can be too restrictive for real-world scenarios. However, statistical learning-based methods may not train deep learning models robustly with these noisy labels. Therefore, it is urgent to design Label-Noise Representation Learning (LNRL) methods for robustly training deep models with noisy labels. To fully understand LNRL, we conduct a survey study. We first clarify a formal definition for LNRL from the perspective of machine learning. Then, via the lens of learning theory and empirical study, we figure out why noisy labels affect deep models' performance. Based on the theoretical guidance, we categorize different LNRL methods into three directions. Under this unified taxonomy, we provide a thorough discussion of the pros and cons of different categories. More importantly, we summarize the essential components of robust LNRL, which can spark new directions. Lastly, we propose possible research directions within LNRL, such as new datasets, instance-dependent LNRL, and adversarial LNRL. Finally, we envision potential directions beyond LNRL, such as learning with feature-noise, preference-noise, domain-noise, similarity-noise, graph-noise, and demonstration-noise.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司