亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents the development of a real-time simulator for the validation of controlling a large vehicle manipulator. The need for this development can be justified by the lack of such a simulator: There are neither open source projects nor commercial products, which would be suitable for testing cooperative control concepts. First, we present the nonlinear simulation model of the vehicle and the manipulator. For the modeling MATLAB/Simulink is used, which also enables a code generation into standalone C++ ROS-Nodes (Robot Operating System Nodes). The emerging challenges of the code generation are also discussed. Then, the obtained standalone C++ ROS-Nodes integrated in the simulator framework which includes a graphical user interface, a steering wheel and a joystick. This simulator can provide the real-time calculation of the overall system's motion enabling the interaction of human and automation. Furthermore, a qualitative validation of the model is given. Finally, the functionalities of the simulator is demonstrated in tests with a human operators.

相關內容

Understanding the interaction between different road users is critical for road safety and automated vehicles (AVs). Existing mathematical models on this topic have been proposed based mostly on either cognitive or machine learning (ML) approaches. However, current cognitive models are incapable of simulating road user trajectories in general scenarios, and ML models lack a focus on the mechanisms generating the behavior and take a high-level perspective which can cause failures to capture important human-like behaviors. Here, we develop a model of human pedestrian crossing decisions based on computational rationality, an approach using deep reinforcement learning (RL) to learn boundedly optimal behavior policies given human constraints, in our case a model of the limited human visual system. We show that the proposed combined cognitive-RL model captures human-like patterns of gap acceptance and crossing initiation time. Interestingly, our model's decisions are sensitive to not only the time gap, but also the speed of the approaching vehicle, something which has been described as a "bias" in human gap acceptance behavior. However, our results suggest that this is instead a rational adaption to human perceptual limitations. Moreover, we demonstrate an approach to accounting for individual differences in computational rationality models, by conditioning the RL policy on the parameters of the human constraints. Our results demonstrate the feasibility of generating more human-like road user behavior by combining RL with cognitive models.

As knowledge graph has the potential to bridge the gap between commonsense knowledge and reasoning over actionable capabilities of mobile robotic platforms, incorporating knowledge graph into robotic system attracted increasing attention in recent years. Previously, graph visualization has been used wildly by developers to make sense of knowledge representations. However, due to lacking the link between abstract knowledge of the real-world environment and the robot's actions, transitional visualization tools are incompatible for expert-user to understand, test, supervise and modify the graph-based reasoning system with the embodiment of the robots. Therefore, we developed an interface which enables robotic experts to send commands to the robot in natural language, then interface visualizes the procedures of the robot mapping the command to the functions for querying in the commonsense knowledge database, links the result to the real world instances in a 3D map and demonstrate the execution of the robot from the first-person perspective of the robot. After 3 weeks of usage of the system by robotic experts in their daily development, some feedback was collected, which provides insight for designing such systems.

Using multiple UAVs to manipulate the full posture of an object is a promising capability in many industrial applications, such as autonomous building construction and heavy-load transportation. Among various methods, manipulation via cables excels in mechanical simplicity and ease of use, but is challenging from a control perspective. Existing centralized control methods either neglect the dynamic coupling between UAVs and the load or resort to a cascade structure, which limits the operational speed and cannot guarantee safety. In this work, we propose a centralized control method that uses nonlinear model predictive control. This control method takes into account the full nonlinear model of the load-UAV system, as well as the constraints of UAV thrust, collision avoidance, and ensuring all cables are taut. By taking into account the above factors, the proposed control algorithm can fully exploit the performance of UAVs and facilitate the speed of operation. We demonstrate our algorithm through 6-DoF simulations to achieve fast and safe manipulation of the pose of a rigid-body payload using multiple UAVs.

In this paper we address the control problem of aerial cable suspended load transportation, using multiple Unmanned Aerial Vehicles (UAVs). First, the dynamical model of the coupled system is obtained using the Newton-Euler formalism, for "n" UAVs transporting a load, where the cables are supposed to be rigid and mass-less. The control problem is stated as a trajectory tracking directly on the load. To do so, a hierarchical control scheme is proposed based on the attractive ellipsoid method, where a virtual controller is calculated for tracking the position of the load, with this, the desired position for each vehicle along with their desired cable tensions are estimated, and used to compute the virtual controller for the position of each vehicle. This results in an underdetermined system, where an infinite number of drones' configurations comply with the desired load position, thus additional constrains can be imposed to obtain an unique solution. Furthermore, this information is used to compute the attitude reference for the vehicles, which are feed to a quaternion based attitude control. The stability analysis, using an energy-like function, demonstrated the practical stability of the system, it is that all the error signals are attracted and contained in an invariant set. Hence, the proposed scheme assures that, given well posed initial conditions, the closed-loop system guarantees the trajectory tracking of the desired position on the load with bounded errors. The proposed control strategy was evaluated in numerical simulations for three agents following a smooth desired trajectory on the load, showing good performance.

This paper presents the equilibrium analysis of a game composed of heterogeneous electric vehicles (EVs) and a power distribution system operator (DSO) as the players, and charging station operators (CSOs) and a transportation network operator (TNO) as coordinators. Each EV tries to pick a charging station as its destination and a route to get there at the same time. However, the traffic and electrical load congestion on the roads and charging stations lead to the interdependencies between the optimal decisions of EVs. CSOs and the TNO need to apply some tolling to control such congestion. On the other hand, the pricing at charging stations depends on real-time distributional locational marginal pricing, which is determined by the DSO after solving the optimal power flow over the power distribution network. This paper also takes into account the local and the coupling/infrastructure constraints of EVs, transportation and distribution networks. This problem is modeled as a generalized aggregative game, and then a decentralized learning method is proposed to obtain an equilibrium point of the game, which is known as variational generalized Wardrop equilibrium. The existence of such an equilibrium point and the convergence of the proposed algorithm to it are proven. We undertake numerical studies on the Savannah city model and the IEEE 33-bus distribution network and investigate the impact of various characteristics on demand and prices.

Robots "in-the-wild" encounter and must traverse widely varying terrain, ranging from solid ground to granular materials like sand to full liquids. Numerous approaches exist, including wheeled and legged robots, each excelling in specific domains. Screw-based locomotion is a promising approach for multi-domain mobility, leveraged in exploratory robotic designs, including amphibious vehicles and snake robotics. However, unlike other forms of locomotion, there is a limited exploration of the models, parameter effects, and efficiency for multi-terrain Archimedes screw locomotion. In this work, we present work towards this missing component in understanding screw-based locomotion: comprehensive experimental results and performance analysis across different media. We designed a mobile test bed for indoor and outdoor experimentation to collect this data. Beyond quantitatively showing the multi-domain mobility of screw-based locomotion, we envision future researchers and engineers using the presented results to design effective screw-based locomotion systems.

In the surface defect detection, there are some suspicious regions that cannot be uniquely classified as abnormal or normal. The annotating of suspicious regions is easily affected by factors such as workers' emotional fluctuations and judgment standard, resulting in noisy labels, which in turn leads to missing and false detections, and ultimately leads to inconsistent judgments of product quality. Unlike the usual noisy labels, the ones used for surface defect detection appear to be inconsistent rather than mislabeled. The noise occurs in almost every label and is difficult to correct or evaluate. In this paper, we proposed a framework that learns trustworthy models from noisy labels for surface defect defection. At first, to avoid the negative impact of noisy labels on the model, we represent the suspicious regions with consistent and precise elements at the pixel-level and redesign the loss function. Secondly, without changing network structure and adding any extra labels, pluggable spatially correlated Bayesian module is proposed. Finally, the defect discrimination confidence is proposed to measure the uncertainty, with which anomalies can be identified as defects. Our results indicate not only the effectiveness of the proposed method in learning from noisy labels, but also robustness and real-time performance.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

In this article, we will look at autoencoders. This article covers the mathematics and the fundamental concepts of autoencoders. We will discuss what they are, what the limitations are, the typical use cases, and we will look at some examples. We will start with a general introduction to autoencoders, and we will discuss the role of the activation function in the output layer and the loss function. We will then discuss what the reconstruction error is. Finally, we will look at typical applications as dimensionality reduction, classification, denoising, and anomaly detection. This paper contains the notes of a PhD-level lecture on autoencoders given in 2021.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

北京阿比特科技有限公司