亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models such as Open AI's Generative Pre-trained Transformer (GPT) models are proficient at answering questions, but their knowledge is confined to the information present in their training data. This limitation renders them ineffective when confronted with questions about recent developments or non-public documents. Our research proposes a method that enables GPT models to answer questions by employing context from an information source not previously included in their training data. The methodology includes preprocessing of contextual information, the embedding of contexts and queries, constructing prompt through the integration of context embeddings, and generating answers using GPT models. We applied this method in a controlled test scenario using the California Driver's Handbook as the information source. The GPT-3 model achieved a 96% passing score on a set of 50 sample driving knowledge test questions. In contrast, without context, the model's passing score fell to 82%. However, the model still fails to answer some questions correctly even with providing library of context, highlighting room for improvement. The research also examined the impact of prompt length and context format, on the model's performance. Overall, the study provides insights into the limitations and potential improvements for GPT models in question-answering tasks.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · CoT · Prompt · Performer · 泛化理論 ·
2023 年 10 月 10 日

Large language models (LLMs) have unveiled remarkable reasoning capabilities by exploiting chain-of-thought (CoT) prompting, which generates intermediate reasoning chains to serve as the rationale for deriving the answer. However, current CoT methods either simply employ general prompts such as Let's think step by step, or heavily rely on handcrafted task-specific demonstrations to attain preferable performances, thereby engendering an inescapable gap between performance and generalization. To bridge this gap, we propose Meta-CoT, a generalizable CoT prompting method in mixed-task scenarios where the type of input questions is unknown. Meta-CoT firstly categorizes the scenario based on the input question and subsequently constructs diverse demonstrations from the corresponding data pool in an automatic pattern. Meta-CoT simultaneously enjoys remarkable performances on ten public benchmark reasoning tasks and superior generalization capabilities. Notably, Meta-CoT achieves the state-of-the-art result on SVAMP (93.7%) without any additional program-aided methods. Our further experiments on five out-of-distribution datasets verify the stability and generality of Meta-CoT.

Large language models (LLMs) fine-tuned with reinforcement learning from human feedback (RLHF) have been used in some of the most widely deployed AI models to date, such as OpenAI's ChatGPT, Anthropic's Claude, or Meta's LLaMA-2. While there has been significant work developing these methods, our understanding of the benefits and downsides of each stage in RLHF is still limited. To fill this gap, we present an extensive analysis of how each stage of the process (i.e. supervised fine-tuning (SFT), reward modelling, and RLHF) affects two key properties: out-of-distribution (OOD) generalisation and output diversity. OOD generalisation is crucial given the wide range of real-world scenarios in which these models are being used, while output diversity refers to the model's ability to generate varied outputs and is important for a variety of use cases. We perform our analysis across two base models on both summarisation and instruction following tasks, the latter being highly relevant for current LLM use cases. We find that RLHF generalises better than SFT to new inputs, particularly as the distribution shift between train and test becomes larger. However, RLHF significantly reduces output diversity compared to SFT across a variety of measures, implying a tradeoff in current LLM fine-tuning methods between generalisation and diversity. Our results provide guidance on which fine-tuning method should be used depending on the application, and show that more research is needed to improve the trade-off between generalisation and diversity.

Humans are able to manipulate Deformable Linear Objects (DLOs) such as cables and wires, with little or no visual information, relying mostly on force sensing. In this work, we propose a reduced DLO model which enables such blind manipulation by keeping the object under tension. Further, an online model estimation procedure is also proposed. A set of elementary sliding and clipping manipulation primitives are defined based on our model. The combination of these primitives allows for more complex motions such as winding of a DLO. The model estimation and manipulation primitives are tested individually but also together in a real-world cable harness production task, using a dual-arm YuMi, thus demonstrating that force-based perception can be sufficient even for such a complex scenario.

While Large Language Models (LLMs) are the dominant models for generative tasks in language, they do not perform as well as diffusion models on image and video generation. To effectively use LLMs for visual generation, one crucial component is the visual tokenizer that maps pixel-space inputs to discrete tokens appropriate for LLM learning. In this paper, we introduce MAGVIT-v2, a video tokenizer designed to generate concise and expressive tokens for both videos and images using a common token vocabulary. Equipped with this new tokenizer, we show that LLMs outperform diffusion models on standard image and video generation benchmarks including ImageNet and Kinetics. In addition, we demonstrate that our tokenizer surpasses the previously top-performing video tokenizer on two more tasks: (1) video compression comparable to the next-generation video codec (VCC) according to human evaluations, and (2) learning effective representations for action recognition tasks.

Large language models (LLMs) have been applied in various applications due to their astonishing capabilities. With advancements in technologies such as chain-of-thought (CoT) prompting and in-context learning (ICL), the prompts fed to LLMs are becoming increasingly lengthy, even exceeding tens of thousands of tokens. To accelerate model inference and reduce cost, this paper presents LLMLingua, a coarse-to-fine prompt compression method that involves a budget controller to maintain semantic integrity under high compression ratios, a token-level iterative compression algorithm to better model the interdependence between compressed contents, and an instruction tuning based method for distribution alignment between language models. We conduct experiments and analysis over four datasets from different scenarios, i.e., GSM8K, BBH, ShareGPT, and Arxiv-March23; showing that the proposed approach yields state-of-the-art performance and allows for up to 20x compression with little performance loss. Our code is available at //aka.ms/LLMLingua.

Large language models (LLMs) such as GPT-4 have emerged as frontrunners, showcasing unparalleled prowess in diverse applications, including answering queries, code generation, and more. Parallelly, graph-structured data, an intrinsic data type, is pervasive in real-world scenarios. Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest. This paper bifurcates such integrations into two predominant categories. The first leverages LLMs for graph learning, where LLMs can not only augment existing graph algorithms but also stand as prediction models for various graph tasks. Conversely, the second category underscores the pivotal role of graphs in advancing LLMs. Mirroring human cognition, we solve complex tasks by adopting graphs in either reasoning or collaboration. Integrating with such structures can significantly boost the performance of LLMs in various complicated tasks. We also discuss and propose open questions for integrating LLMs with graph-structured data for the future direction of the field.

Large language models (LLMs) have shown promise as automated evaluators for assessing the quality of answers generated by AI systems. However, these LLM-based evaluators exhibit position bias, or inconsistency, when used to evaluate candidate answers in pairwise comparisons, favoring either the first or second answer regardless of content. To address this limitation, we propose PORTIA, an alignment-based system designed to mimic human comparison strategies to calibrate position bias in a lightweight yet effective manner. Specifically, PORTIA splits the answers into multiple segments, aligns similar content across candidate answers, and then merges them back into a single prompt for evaluation by LLMs. We conducted extensive experiments with six diverse LLMs to evaluate 11,520 answer pairs. Our results show that PORTIA markedly enhances the consistency rates for all the models and comparison forms tested, achieving an average relative improvement of 47.46%. Remarkably, PORTIA enables less advanced GPT models to achieve 88% agreement with the state-of-the-art GPT-4 model at just 10% of the cost. Furthermore, it rectifies around 80% of the position bias instances within the GPT-4 model, elevating its consistency rate up to 98%. Subsequent human evaluations indicate that the PORTIA-enhanced GPT-3.5 model can even surpass the standalone GPT-4 in terms of alignment with human evaluators. These findings highlight PORTIA's ability to correct position bias, improve LLM consistency, and boost performance while keeping cost-efficiency. This represents a valuable step toward a more reliable and scalable use of LLMs for automated evaluations across diverse applications.

Large language models (LLMs), such as ChatGPT and GPT-4, are gaining wide-spread real world use. Yet, these LLMs are closed source, and little is known about their performance in real-world use cases. In academia, LLM performance is often measured on benchmarks which may have leaked into the LLM's training data. We apply and evaluate ChatGPT and GPT-4 for the real-world task of cost-efficiently extracting insights from a text corpus published after the LLMs were trained. We extract 4,392 research challenges in over 90 topics from the 2023 CHI conference proceedings and visualize the research challenges for interactive exploration. We critically evaluate the LLMs on this practical task and conclude that the combination of ChatGPT and GPT-4 makes an excellent cost-efficient means for analyzing a corpus at scale. Cost-efficiency is key for prototyping research ideas and analyzing text corpora from different perspectives, with implications for applying LLMs in academia and practice.

ChatGPT is an AI language model developed by OpenAI that can understand and generate human-like text. It can be used for a variety of use cases such as language generation, question answering, text summarization, chatbot development, language translation, sentiment analysis, content creation, personalization, text completion, and storytelling. While ChatGPT has garnered significant positive attention, it has also generated a sense of apprehension and uncertainty in academic circles. There is concern that students may leverage ChatGPT to complete take-home assignments and exams and obtain favorable grades without genuinely acquiring knowledge. This paper adopts a quantitative approach to demonstrate ChatGPT's high degree of unreliability in answering a diverse range of questions pertaining to topics in undergraduate computer science. Our analysis shows that students may risk self-sabotage by blindly depending on ChatGPT to complete assignments and exams. We build upon this analysis to provide constructive recommendations to both students and instructors.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司