亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Crowd counting has gained significant popularity due to its practical applications. However, mainstream counting methods ignore precise individual localization and suffer from annotation noise because of counting from estimating density maps. Additionally, they also struggle with high-density images.To address these issues, we propose an end-to-end model called Fine-Grained Extraction Network (FGENet). Different from methods estimating density maps, FGENet directly learns the original coordinate points that represent the precise localization of individuals.This study designs a fusion module, named Fine-Grained Feature Pyramid(FGFP), that is used to fuse feature maps extracted by the backbone of FGENet. The fused features are then passed to both regression and classification heads, where the former provides predicted point coordinates for a given image, and the latter determines the confidence level for each predicted point being an individual. At the end, FGENet establishes correspondences between prediction points and ground truth points by employing the Hungarian algorithm. For training FGENet, we design a robust loss function, named Three-Task Combination (TTC), to mitigate the impact of annotation noise. Extensive experiments are conducted on four widely used crowd counting datasets. Experimental results demonstrate the effectiveness of FGENet. Notably, our method achieves a remarkable improvement of 3.14 points in Mean Absolute Error (MAE) on the ShanghaiTech Part A dataset, showcasing its superiority over the existing state-of-the-art methods. Even more impressively, FGENet surpasses previous benchmarks on the UCF\_CC\_50 dataset with an astounding enhancement of 30.16 points in MAE.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Independent parallel q-ary symmetric channels are a suitable transmission model for several applications. The proposed weighted-Hamming metric is tailored to this setting and enables optimal decoding performance. We show that some weighted-Hamming-metric codes exhibit the unusual property that all errors beyond half the minimum distance can be corrected. Nevertheless, a tight relation between the error-correction capability of a code and its minimum distance can be established. Generalizing their Hamming-metric counterparts, upper and lower bounds on the cardinality of a code with a given weighted-Hamming distance are obtained. Finally, we propose a simple code construction with optimal minimum distance for specific parameters.

Selecting high-quality pre-training data is important for creating capable language models, but existing methods rely on simple heuristics. We introduce QuRating, a method for selecting pre-training data that captures the abstract qualities of texts which humans intuitively perceive. In this paper, we investigate four qualities - writing style, required expertise, facts & trivia, and educational value. We find that LLMs are able to discern these qualities and observe that they are better at making pairwise judgments of texts than at rating the quality of a text directly. We train a QuRater model to learn scalar ratings from pairwise judgments, and use it to annotate a 260B training corpus with quality ratings for each of the four criteria. In our experiments, we select 30B tokens according to the different quality ratings and train 1.3B-parameter language models on the selected data. We find that it is important to balance quality and diversity, as selecting only the highest-rated documents leads to poor results. When we sample using quality ratings as logits over documents, our models achieve lower perplexity and stronger in-context learning performance than baselines. Beyond data selection, we use the quality ratings to construct a training curriculum which improves performance without changing the training dataset. We extensively analyze the quality ratings and discuss their characteristics, biases, and wider implications.

Finding errors in machine learning applications requires a thorough exploration of their behavior over data. Existing approaches used by practitioners are often ad-hoc and lack the abstractions needed to scale this process. We present TorchQL, a programming framework to evaluate and improve the correctness of machine learning applications. TorchQL allows users to write queries to specify and check integrity constraints over machine learning models and datasets. It seamlessly integrates relational algebra with functional programming to allow for highly expressive queries using only eight intuitive operators. We evaluate TorchQL on diverse use-cases including finding critical temporal inconsistencies in objects detected across video frames in autonomous driving, finding data imputation errors in time-series medical records, finding data labeling errors in real-world images, and evaluating biases and constraining outputs of language models. Our experiments show that TorchQL enables up to 13x faster query executions than baselines like Pandas and MongoDB, and up to 40% shorter queries than native Python. We also conduct a user study and find that TorchQL is natural enough for developers familiar with Python to specify complex integrity constraints.

Graphical models are an important tool in exploring relationships between variables in complex, multivariate data. Methods for learning such graphical models are well developed in the case where all variables are either continuous or discrete, including in high-dimensions. However, in many applications data span variables of different types (e.g. continuous, count, binary, ordinal, etc.), whose principled joint analysis is nontrivial. Latent Gaussian copula models, in which all variables are modeled as transformations of underlying jointly Gaussian variables, represent a useful approach. Recent advances have shown how the binary-continuous case can be tackled, but the general mixed variable type regime remains challenging. In this work, we make the simple yet useful observation that classical ideas concerning polychoric and polyserial correlations can be leveraged in a latent Gaussian copula framework. Building on this observation we propose flexible and scalable methodology for data with variables of entirely general mixed type. We study the key properties of the approaches theoretically and empirically, via extensive simulations as well an illustrative application to data from the UK Biobank concerning COVID-19 risk factors.

Feature selection is a crucial step in data mining to enhance model performance by reducing data dimensionality. However, the increasing dimensionality of collected data exacerbates the challenge known as the "curse of dimensionality", where computation grows exponentially with the number of dimensions. To tackle this issue, evolutionary computational (EC) approaches have gained popularity due to their simplicity and applicability. Unfortunately, the diverse designs of EC methods result in varying abilities to handle different data, often underutilizing and not sharing information effectively. In this paper, we propose a novel approach called PSO-based Multi-task Evolutionary Learning (MEL) that leverages multi-task learning to address these challenges. By incorporating information sharing between different feature selection tasks, MEL achieves enhanced learning ability and efficiency. We evaluate the effectiveness of MEL through extensive experiments on 22 high-dimensional datasets. Comparing against 24 EC approaches, our method exhibits strong competitiveness. Additionally, we have open-sourced our code on GitHub at //github.com/wangxb96/MEL.

Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司