亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Regret Matching+ (RM+) and its variants are important algorithms for solving large-scale games. However, a theoretical understanding of their success in practice is still a mystery. Moreover, recent advances on fast convergence in games are limited to no-regret algorithms such as online mirror descent, which satisfy stability. In this paper, we first give counterexamples showing that RM+ and its predictive version can be unstable, which might cause other players to suffer large regret. We then provide two fixes: restarting and chopping off the positive orthant that RM+ works in. We show that these fixes are sufficient to get $O(T^{1/4})$ individual regret and $O(1)$ social regret in normal-form games via RM+ with predictions. We also apply our stabilizing techniques to clairvoyant updates in the uncoupled learning setting for RM+ and prove desirable results akin to recent works for Clairvoyant online mirror descent. Our experiments show the advantages of our algorithms over vanilla RM+-based algorithms in matrix and extensive-form games.

相關內容

FAST:Conference on File and Storage Technologies。 Explanation:文(wen)件(jian)和存(cun)儲技術會議。 Publisher:USENIX。 SIT:

No-regret learners seek to minimize the difference between the loss they cumulated through the actions they played, and the loss they would have cumulated in hindsight had they consistently modified their behavior according to some strategy transformation function. The size of the set of transformations considered by the learner determines a natural notion of rationality. As the set of transformations each learner considers grows, the strategies played by the learners recover more complex game-theoretic equilibria, including correlated equilibria in normal-form games and extensive-form correlated equilibria in extensive-form games. At the extreme, a no-swap-regret agent is one that minimizes regret against the set of all functions from the set of strategies to itself. While it is known that the no-swap-regret condition can be attained efficiently in nonsequential (normal-form) games, understanding what is the strongest notion of rationality that can be attained efficiently in the worst case in sequential (extensive-form) games is a longstanding open problem. In this paper we provide a positive result, by showing that it is possible, in any sequential game, to retain polynomial-time (in the game tree size) iterations while achieving sublinear regret with respect to all linear transformations of the mixed strategy space, a notion called no-linear-swap regret. This notion of hindsight rationality is as strong as no-swap-regret in nonsequential games, and stronger than no-trigger-regret in sequential games -- thereby proving the existence of a subset of extensive-form correlated equilibria robust to linear deviations, which we call linear-deviation correlated equilibria, that can be approached efficiently.

We extend and combine several tools of the literature to design fast, adaptive, anytime and scale-free online learning algorithms. Scale-free regret bounds must scale linearly with the maximum loss, both toward large losses and toward very small losses. Adaptive regret bounds demonstrate that an algorithm can take advantage of easy data and potentially have constant regret. We seek to develop fast algorithms that depend on as few parameters as possible, in particular they should be anytime and thus not depend on the time horizon. Our first and main tool, isotuning, is a generalization of the idea of balancing the trade-off of the regret. We develop a set of tools to design and analyze such learning rates easily and show that they adapts automatically to the rate of the regret (whether constant, $O(\log T)$, $O(\sqrt{T})$, etc.) within a factor 2 of the optimal learning rate in hindsight for the same observed quantities. The second tool is an online correction, which allows us to obtain centered bounds for many algorithms, to prevent the regret bounds from being vacuous when the domain is overly large or only partially constrained. The last tool, null updates, prevents the algorithm from performing overly large updates, which could result in unbounded regret, or even invalid updates. We develop a general theory using these tools and apply it to several standard algorithms. In particular, we (almost entirely) restore the adaptivity to small losses of FTRL for unbounded domains, design and prove scale-free adaptive guarantees for a variant of Mirror Descent (at least when the Bregman divergence is convex in its second argument), extend Adapt-ML-Prod to scale-free guarantees, and provide several other minor contributions about Prod, AdaHedge, BOA and Soft-Bayes.

We consider the randomized communication complexity of the distributed $\ell_p$-regression problem in the coordinator model, for $p\in (0,2]$. In this problem, there is a coordinator and $s$ servers. The $i$-th server receives $A^i\in\{-M, -M+1, \ldots, M\}^{n\times d}$ and $b^i\in\{-M, -M+1, \ldots, M\}^n$ and the coordinator would like to find a $(1+\epsilon)$-approximate solution to $\min_{x\in\mathbb{R}^n} \|(\sum_i A^i)x - (\sum_i b^i)\|_p$. Here $M \leq \mathrm{poly}(nd)$ for convenience. This model, where the data is additively shared across servers, is commonly referred to as the arbitrary partition model. We obtain significantly improved bounds for this problem. For $p = 2$, i.e., least squares regression, we give the first optimal bound of $\tilde{\Theta}(sd^2 + sd/\epsilon)$ bits. For $p \in (1,2)$,we obtain an $\tilde{O}(sd^2/\epsilon + sd/\mathrm{poly}(\epsilon))$ upper bound. Notably, for $d$ sufficiently large, our leading order term only depends linearly on $1/\epsilon$ rather than quadratically. We also show communication lower bounds of $\Omega(sd^2 + sd/\epsilon^2)$ for $p\in (0,1]$ and $\Omega(sd^2 + sd/\epsilon)$ for $p\in (1,2]$. Our bounds considerably improve previous bounds due to (Woodruff et al. COLT, 2013) and (Vempala et al., SODA, 2020).

This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization. In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices. The goal is to jointly determine the bitwidths employed for local FL model quantization and the set of devices participating in FL training at each iteration. We pose this as an optimization problem that aims to minimize the training loss of quantized FL under a per-iteration device sampling budget and delay requirement. However, the formulated problem is difficult to solve without (i) a concrete understanding of how quantization impacts global ML performance and (ii) the ability of the server to construct estimates of this process efficiently. To address the first challenge, we analytically characterize how limited wireless resources and induced quantization errors affect the performance of the proposed FL method. Our results quantify how the improvement of FL training loss between two consecutive iterations depends on the device selection and quantization scheme as well as on several parameters inherent to the model being learned. Then, we show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations. Compared to model-free RL, this model-based RL approach leverages the derived mathematical characterization of the FL training process to discover an effective device selection and quantization scheme without imposing additional device communication overhead. Simulation results show that the proposed FL algorithm can reduce the convergence time.

The feedback that users provide through their choices (e.g., clicks, purchases) is one of the most common types of data readily available for training search and recommendation algorithms. However, myopically training systems based on choice data may only improve short-term engagement, but not the long-term sustainability of the platform and the long-term benefits to its users, content providers, and other stakeholders. In this paper, we thus develop a new framework in which decision makers (e.g., platform operators, regulators, users) can express long-term goals for the behavior of the platform (e.g., fairness, revenue distribution, legal requirements). These goals take the form of exposure or impact targets that go well beyond individual sessions, and we provide new control-based algorithms to achieve these goals. In particular, the controllers are designed to achieve the stated long-term goals with minimum impact on short-term engagement. Beyond the principled theoretical derivation of the controllers, we evaluate the algorithms on both synthetic and real-world data. While all controllers perform well, we find that they provide interesting trade-offs in efficiency, robustness, and the ability to plan ahead.

This paper presents a decentralized algorithm for solving distributed convex optimization problems in dynamic networks with time-varying objectives. The unique feature of the algorithm lies in its ability to accommodate a wide range of communication systems, including previously unsupported ones, by abstractly modeling the information exchange in the network. Specifically, it supports a novel communication protocol based on the "over-the-air" function computation (OTA-C) technology, that is designed for an efficient and truly decentralized implementation of the consensus step of the algorithm. Unlike existing OTA-C protocols, the proposed protocol does not require the knowledge of network graph structure or channel state information, making it particularly suitable for decentralized implementation over ultra-dense wireless networks with time-varying topologies and fading channels. Furthermore, the proposed algorithm synergizes with the "superiorization" methodology, allowing the development of new distributed algorithms with enhanced performance for the intended applications. The theoretical analysis establishes sufficient conditions for almost sure convergence of the algorithm to a common time-invariant solution for all agents, assuming such a solution exists. Our algorithm is applied to a real-world distributed random field estimation problem, showcasing its efficacy in terms of convergence speed, scalability, and spectral efficiency. Furthermore, we present a superiorized version of our algorithm that achieves faster convergence with significantly reduced energy consumption compared to the unsuperiorized algorithm.

While ERM suffices to attain near-optimal generalization error in the stochastic learning setting, this is not known to be the case in the online learning setting, where algorithms for general concept classes rely on computationally inefficient oracles such as the Standard Optimal Algorithm (SOA). In this work, we propose an algorithm for online binary classification setting that relies solely on ERM oracle calls, and show that it has finite regret in the realizable setting and sublinearly growing regret in the agnostic setting. We bound the regret in terms of the Littlestone and threshold dimensions of the underlying concept class. We obtain similar results for nonparametric games, where the ERM oracle can be interpreted as a best response oracle, finding the best response of a player to a given history of play of the other players. In this setting, we provide learning algorithms that only rely on best response oracles and converge to approximate-minimax equilibria in two-player zero-sum games and approximate coarse correlated equilibria in multi-player general-sum games, as long as the game has a bounded fat-threshold dimension. Our algorithms apply to both binary-valued and real-valued games and can be viewed as providing justification for the wide use of double oracle and multiple oracle algorithms in the practice of solving large games.

We study multiclass classification in the agnostic adversarial online learning setting. As our main result, we prove that any multiclass concept class is agnostically learnable if and only if its Littlestone dimension is finite. This solves an open problem studied by Daniely, Sabato, Ben-David, and Shalev-Shwartz (2011,2015) who handled the case when the number of classes (or labels) is bounded. We also prove a separation between online learnability and online uniform convergence by exhibiting an easy-to-learn class whose sequential Rademacher complexity is unbounded. Our learning algorithm uses the multiplicative weights algorithm, with a set of experts defined by executions of the Standard Optimal Algorithm on subsequences of size Littlestone dimension. We argue that the best expert has regret at most Littlestone dimension relative to the best concept in the class. This differs from the well-known covering technique of Ben-David, P\'{a}l, and Shalev-Shwartz (2009) for binary classification, where the best expert has regret zero.

We use concept-based interpretable models to mitigate shortcut learning. Existing methods lack interpretability. Beginning with a Blackbox, we iteratively carve out a mixture of interpretable experts (MoIE) and a residual network. Each expert explains a subset of data using First Order Logic (FOL). While explaining a sample, the FOL from biased BB-derived MoIE detects the shortcut effectively. Finetuning the BB with Metadata Normalization (MDN) eliminates the shortcut. The FOLs from the finetuned-BB-derived MoIE verify the elimination of the shortcut. Our experiments show that MoIE does not hurt the accuracy of the original BB and eliminates shortcuts effectively.

An algorithm is said to be adaptive to a certain parameter (of the problem) if it does not need a priori knowledge of such a parameter but performs competitively to those that know it. This dissertation presents our work on adaptive algorithms in following scenarios: 1. In the stochastic optimization setting, we only receive stochastic gradients and the level of noise in evaluating them greatly affects the convergence rate. Tuning is typically required when without prior knowledge of the noise scale in order to achieve the optimal rate. Considering this, we designed and analyzed noise-adaptive algorithms that can automatically ensure (near)-optimal rates under different noise scales without knowing it. 2. In training deep neural networks, the scales of gradient magnitudes in each coordinate can scatter across a very wide range unless normalization techniques, like BatchNorm, are employed. In such situations, algorithms not addressing this problem of gradient scales can behave very poorly. To mitigate this, we formally established the advantage of scale-free algorithms that adapt to the gradient scales and presented its real benefits in empirical experiments. 3. Traditional analyses in non-convex optimization typically rely on the smoothness assumption. Yet, this condition does not capture the properties of some deep learning objective functions, including the ones involving Long Short-Term Memory networks and Transformers. Instead, they satisfy a much more relaxed condition, with potentially unbounded smoothness. Under this condition, we show that a generalized SignSGD algorithm can theoretically match the best-known convergence rates obtained by SGD with gradient clipping but does not need explicit clipping at all, and it can empirically match the performance of Adam and beat others. Moreover, it can also be made to automatically adapt to the unknown relaxed smoothness.

北京阿比特科技有限公司