亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider the design of a multiple-input multiple-output (MIMO) transmitter which simultaneously functions as a MIMO radar and a base station for downlink multiuser communications. In addition to a power constraint, we require the covariance of the transmit waveform be equal to a given optimal covariance for MIMO radar, to guarantee the radar performance. With this constraint, we formulate and solve the signal-to-interference-plus-noise ratio (SINR) balancing problem for multiuser transmit beamforming via convex optimization. Considering that the interference cannot be completely eliminated with this constraint, we introduce dirty paper coding (DPC) to further cancel the interference, and formulate the SINR balancing and sum rate maximization problem in the DPC regime. Although both of the two problems are non-convex, we show that they can be reformulated to convex optimizations via the Lagrange and downlink-uplink duality. In addition, we propose gradient projection based algorithms to solve the equivalent dual problem of SINR balancing, in both transmit beamforming and DPC regimes. The simulation results demonstrate significant performance improvement of DPC over transmit beamforming, and also indicate that the degrees of freedom for the communication transmitter is restricted by the rank of the covariance.

相關內容

5G technology allows the presence of heterogeneous services in the same physical network. On the radio access network (RAN), the spectrum slicing of the shared radio resources is a critical task to guarantee the performance of each service. In this paper, we analyze a downlink communication in which a base station (BS) should serve two types of traffic, enhanced mobile broadband (eMBB) and ultra-reliable low-latency communication (URLLC), respectively. Due to the nature of low-latency traffic, the BS knows the channel state information (CSI) of the eMBB users only. In this setting, we study the power minimization problem employing orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) schemes. We analyze the impact of resource sharing, showing that the knowledge of eMBB CSI can be used also in resource allocation for URLLC users. Based on this analysis, we propose two algorithms: a feasible and a block coordinated descent approach (BCD). We show that the BCD is optimal for the URLLC power allocation. The numerical results show that NOMA leads to a lower power consumption compared to OMA, except when the URLLC user is very close to the BS. For the last case, the optimal approach depends on the channel condition of the eMBB user. In any case, even when the OMA paradigm attains the best performance, the gap with NOMA is negligible, proving the NOMA capacity in exploiting the shared resources to reduce the power consumption in every condition.

The unlabeled sensing problem is to solve a noisy linear system of equations under unknown permutation of the measurements. We study a particular case of the problem where the permutations are restricted to be r-local, i.e. the permutation matrix is block diagonal with r x r blocks. Assuming a Gaussian measurement matrix, we argue that the r-local permutation model is more challenging compared to a recent sparse permutation model. We propose a proximal alternating minimization algorithm for the general unlabeled sensing problem that provably converges to a first order stationary point. Applied to the r-local model, we show that the resulting algorithm is efficient. We validate the algorithm on synthetic and real datasets. We also formulate the 1-d unassigned distance geometry problem as an unlabeled sensing problem with a structured measurement matrix.

This paper studies a secrecy integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) aims to send confidential messages to a single-antenna communication user (CU), and at the same time sense several targets that may be suspicious eavesdroppers. To ensure the sensing quality while preventing the eavesdropping, we consider that the BS sends dedicated sensing signals (in addition to confidential information signals) that play a dual role of artificial noise (AN) for confusing the eavesdropping targets. Under this setup, we jointly optimize the transmit information and sensing beamforming at the BS, to minimize the matching error between the transmit beampattern and a desired beampattern for sensing, subject to the minimum secrecy rate requirement at the CU and the transmit power constraint at the BS. Although the formulated problem is non-convex, we propose an algorithm to obtain the globally optimal solution by using the semidefinite relaxation (SDR) together with a one-dimensional (1D) search. Next, to avoid the high complexity induced by the 1D search, we also present two sub-optimal solutions based on zero-forcing and separate beamforming designs, respectively. Numerical results show that the proposed designs properly adjust the information and sensing beams to balance the tradeoffs among communicating with CU, sensing targets, and confusing eavesdroppers, thus achieving desirable transmit beampattern for sensing while ensuring the CU's secrecy rate.

This paper proposes a scalable channel estimation and reflection optimization framework for reconfigurable intelligent surface (RIS)-enhanced orthogonal frequency division multiplexing (OFDM) systems. Specifically, the proposed scheme firstly generates a training set of RIS reflection coefficient vectors offline. For each RIS reflection coefficient vector in the training set, the proposed scheme estimates only the end-to-end composite channel and then performs the transmit power allocation. As a result, the RIS reflection optimization is simplified by searching for the optimal reflection coefficient vector maximizing the achievable rate from the pre-designed training set. The proposed scheme is capable of flexibly adjusting the training overhead according to the given channel coherence time, which is in sharp contrast to the conventional counterparts. Moreover, we discuss the computational complexity of the proposed scheme and analyze the theoretical scaling law of the achievable rate versus the number of training slots. Finally, simulation results demonstrate that the proposed scheme is superior to existing approaches in terms of decreasing training overhead, reducing complexity as well as improving rate performance in the presence of channel estimation errors.

This paper presents a new joint radar and communication technique based on the classical stepped frequency radar waveform. The randomization in the waveform, which is achieved by using permutations of the sequence of frequency tones, is utilized for data transmission. A new signaling scheme is proposed in which the mapping between incoming data and waveforms is performed based on an efficient combinatorial transform called the Lehmer code. Considering the optimum maximum likelihood (ML) detection, the union bound and the nearest neighbour approximation on the communication block error probability is derived for communication in an additive white Gaussian noise (AWGN) channel. The results are further extended to incorporate the Rician fading channel model, of which the Rayleigh fading channel model is presented as a special case. Furthermore, an efficient communication receiver implementation is discussed based on the Hungarian algorithm which achieves optimum performance with much less operational complexity when compared to an exhaustive search. From the radar perspective, two key analytical tools, namely, the ambiguity function (AF) and the Fisher information matrix are derived. Furthermore, accurate approximations to the Cramer-Rao lower bounds (CRLBs) on the delay and Doppler estimation errors are derived based on which the range and velocity estimation accuracy of the waveform is analysed. Numerical examples are used to highlight the accuracy of the analysis and to illustrate the performance of the proposed waveform.

In this paper, we investigate covert communication over millimeter-wave (mmWave) frequencies. In particular, a mmWave transmitter, referred to as Alice, attempts to reliably communicate to a receiver, referred to as Bob, while hiding the existence of communication from a warden, referred to as Willie. In this regard, operating over the mmWave bands not only increases the covertness thanks to directional beams, but also increases the transmission data rates given much more available bandwidths and enables ultra-low form factor transceivers due to the lower wavelengths used compared to the conventional radio frequency (RF) counterpart. We first assume that the transmitter Alice employs two independent antenna arrays in which one of the arrays is to form a directive beam for data transmission to Bob. The other antenna array is used by Alice to generate another beam toward Willie as a jamming signal while changing the transmit power independently across the transmission blocks in order to achieve the desired covertness. For this dual-beam setup, we characterize Willie's detection error rate with the optimal detector and the closed-form of its expected value from Alice's perspective. We then derive the closed-form expression for the outage probability of the Alice-Bob link, which enables characterizing the optimal covert rate that can be achieved using the proposed setup. We further obtain tractable forms for the ergodic capacity of the Alice-Bob link involving only one-dimensional integrals that can be computed in closed forms for most ranges of the channel parameters. Finally, we highlight how the results can be extended to more practical scenarios, particularly to the cases where perfect information about the location of the passive warden is not available.

To leverage massive distributed data and computation resources, machine learning in the network edge is considered to be a promising technique especially for large-scale model training. Federated learning (FL), as a paradigm of collaborative learning techniques, has obtained increasing research attention with the benefits of communication efficiency and improved data privacy. Due to the lossy communication channels and limited communication resources (e.g., bandwidth and power), it is of interest to investigate fast responding and accurate FL schemes over wireless systems. Hence, we investigate the problem of jointly optimized communication efficiency and resources for FL over wireless Internet of things (IoT) networks. To reduce complexity, we divide the overall optimization problem into two sub-problems, i.e., the client scheduling problem and the resource allocation problem. To reduce the communication costs for FL in wireless IoT networks, a new client scheduling policy is proposed by reusing stale local model parameters. To maximize successful information exchange over networks, a Lagrange multiplier method is first leveraged by decoupling variables including power variables, bandwidth variables and transmission indicators. Then a linear-search based power and bandwidth allocation method is developed. Given appropriate hyper-parameters, we show that the proposed communication-efficient federated learning (CEFL) framework converges at a strong linear rate. Through extensive experiments, it is revealed that the proposed CEFL framework substantially boosts both the communication efficiency and learning performance of both training loss and test accuracy for FL over wireless IoT networks compared to a basic FL approach with uniform resource allocation.

In this paper, we consider the one-bit precoding problem for the multiuser downlink massive multiple-input multiple-output (MIMO) system with phase shift keying (PSK) modulation and focus on the celebrated constructive interference (CI)-based problem formulation. We first establish the NP-hardness of the problem (even in the single-user case), which reveals the intrinsic difficulty of globally solving the problem. Then, we propose a novel negative $\ell_1$ penalty model for the considered problem, which penalizes the one-bit constraint into the objective with a negative $\ell_1$-norm term, and show the equivalence between (global and local) solutions of the original problem and the penalty problem when the penalty parameter is sufficiently large. We further transform the penalty model into an equivalent min-max problem and propose an efficient alternating optimization (AO) algorithm for solving it. The AO algorithm enjoys low per-iteration complexity and is guaranteed to converge to the stationary point of the min-max problem. To further reduce the computational cost, we also propose a low-complexity implementation of the AO algorithm, where the values of the variables will be fixed in later iterations once they satisfy the one-bit constraint. Numerical results show that, compared against the state-of-the-art CI-based algorithms, both of the proposed algorithms generally achieve better bit-error-rate (BER) performance with lower computational cost, especially when the problem is difficult (e.g., high-order modulations, large number of antennas, or high user-antenna ratio).

Intelligent reflecting surface (IRS) is a promising solution to build a programmable wireless environment for future communication systems, in which the reflector elements steer the incident signal in fully customizable ways by passive beamforming. In this paper, an IRS-aided secure spatial modulation (SM) is proposed, where the IRS perform passive beamforming and information transfer simultaneously by adjusting the on-off states of the reflecting elements. We formulate an optimization problem to maximize the average secrecy rate (SR) by jointly optimizing the passive beamforming at IRS and the transmit power at transmitter under the consideration that the direct pathes channels from transmitter to receivers are obstructed by obstacles. As the expression of SR is complex, we derive a newly fitting expression (NASR) for the expression of traditional approximate SR (TASR), which has simpler closed-form and more convenient for subsequent optimization. Based on the above two fitting expressions, three beamforming methods, called maximizing NASR via successive convex approximation (Max-NASR-SCA), maximizing NASR via dual ascent (Max-NASR-DA) and maximizing TASR via semi-definite relaxation (Max-TASR-SDR) are proposed to improve the SR performance. Additionally, two transmit power design (TPD) methods are proposed based on the above two approximate SR expressions, called Max-NASR-TPD and Max-TASR-TPD. Simulation results show that the proposed Max-NASR-DA and Max-NASR-SCA IRS beamformers harvest substantial SR performance gains over Max-TASR-SDR. For TPD, the proposed Max-NASR-TPD performs better than Max-TASR-TPD. Particularly, the Max-NASR-TPD has a closed-form solution.

Intelligent reflecting surface (IRS) is a promising technology that enables the precise control of the electromagnetic environment in future wireless communication networks. To leverage the IRS effectively, the acquisition of channel state information (CSI) is crucial in IRS-assisted communication systems, which, however, is challenging. In this paper, we propose the optimal pilot power allocation strategy for the channel estimation of IRS-assisted communication systems, which is capable of further improving the achievable rate performance with imperfect CSI. More specifically, first of all, we introduce a multi-IRS-assisted communication system in the face of practical channel estimation errors. Furthermore, the ergodic capacity with imperfect CSI is derived in an explicit closed-form expression under the single-input single-output (SISO) consideration. Secondly, we formulate the optimization problem of maximizing the ergodic capacity with imperfect CSI, subject to the constraint of the average uplink pilot power. Thirdly, the method of Lagrange multipliers is invoked to solve the ergodic rate maximizing problem and thus to obtain the optimal pilot power allocation strategy. The resultant pilot power allocation solution suggests allocating more amount of power to the pilots for estimating the weak reflection channels. Besides, we also elaborate on the expense of the proposed pilot power allocation strategy upon analyzing the peak-to-average-power ratio (PAPR) increase quantitatively. Finally, the extensive simulation results verify our analysis and reveal some interesting results. For example, for the user in the vicinity of a large IRS, it is suggested to switch off other IRSs and only switch on the IRS nearest the user; For the user near a small IRS, it is better to switch on all IRSs and perform the optimal pilot power allocation for enhancing the achievable rate performance.

北京阿比特科技有限公司