亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern programmable digital signal processing relies on floating-point numbers for their ease of use. Fixed-point number formats have the potential to save resources and improve execution time, but realising this potential burdens the programmer with the need to define each format, at every step of the computation. This article reviews existing methods to automatically determine fixed-point formats, then describes and evaluates the prototype implementation of automatic fixed-point format determination in the Faust compiler.

相關內容

信號處理期刊采用了理論與實踐的各個方面的信號處理。它以原始研究工作,教程和評論文章以及實際發展情況為特色。它旨在將知識和經驗快速傳播給從事信號處理研究,開發或實際應用的工程師和科學家。該期刊涵蓋的主題領域包括:信號理論;隨機過程; 檢測和估計;光譜分析;過濾;信號處理系統;軟件開發;圖像處理; 模式識別; 光信號處理;數字信號處理; 多維信號處理;通信信號處理;生物醫學信號處理;地球物理和天體信號處理;地球資源信號處理;聲音和振動信號處理;數據處理; 遙感; 信號處理技術;雷達信號處理;聲納信號處理;工業應用;新的應用程序。 官網地址:

The traditional Transformer model encounters challenges with variable-length input sequences, particularly in Hyperspectral Image Classification (HSIC), leading to efficiency and scalability concerns. To overcome this, we propose a pyramid-based hierarchical transformer (PyFormer). This innovative approach organizes input data hierarchically into segments, each representing distinct abstraction levels, thereby enhancing processing efficiency for lengthy sequences. At each level, a dedicated transformer module is applied, effectively capturing both local and global context. Spatial and spectral information flow within the hierarchy facilitates communication and abstraction propagation. Integration of outputs from different levels culminates in the final input representation. Experimental results underscore the superiority of the proposed method over traditional approaches. Additionally, the incorporation of disjoint samples augments robustness and reliability, thereby highlighting the potential of our approach in advancing HSIC. The source code is available at //github.com/mahmad00/PyFormer.

Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices, offering a significant benefit for individuals with motor impairments. Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise. This paper introduces EEGEncoder, a deep learning framework that employs transformer models to surmount these limitations. Our innovative multi-scale fusion architecture captures both immediate and extended temporal features, thereby enhancing MI task classification precision. EEGEncoder's key innovations include the inaugural application of transformers in MI-EEG signal classification, a mixup data augmentation strategy for bolstered generalization, and a multi-task learning approach for refined predictive accuracy. When tested on the BCI Competition IV dataset 2a, our model established a new benchmark with its state-of-the-art performance. EEGEncoder signifies a substantial advancement in BCI technology, offering a robust, efficient, and effective tool for transforming thought into action, with the potential to significantly enhance the quality of life for those dependent on BCIs.

Human pose estimation is a fundamental and challenging task in computer vision. Larger-scale and more accurate keypoint annotations, while helpful for improving the accuracy of supervised pose estimation, are often expensive and difficult to obtain. Semi-supervised pose estimation tries to leverage a large amount of unlabeled data to improve model performance, which can alleviate the problem of insufficient labeled samples. The latest semi-supervised learning usually adopts a strong and weak data augmented teacher-student learning framework to deal with the challenge of "Human postural diversity and its long-tailed distribution". Appropriate data augmentation method is one of the key factors affecting the accuracy and generalization of semi-supervised models. Aiming at the problem that the difference of sample learning is not considered in the fixed keypoint masking augmentation method, this paper proposes an adaptive keypoint masking method, which can fully mine the information in the samples and obtain better estimation performance. In order to further improve the generalization and robustness of the model, this paper proposes a dual-branch data augmentation scheme, which can perform Mixup on samples and features on the basis of adaptive keypoint masking. The effectiveness of the proposed method is verified on COCO and MPII, outperforming the state-of-the-art semi-supervised pose estimation by 5.2% and 0.3%, respectively.

The ability of the foundation models heavily relies on large-scale, diverse, and high-quality pretraining data. In order to improve data quality, researchers and practitioners often have to manually curate datasets from difference sources and develop dedicated data cleansing pipeline for each data repository. Lacking a unified data processing framework, this process is repetitive and cumbersome. To mitigate this issue, we propose a data processing framework that integrates a Processing Module which consists of a series of operators at different granularity levels, and an Analyzing Module which supports probing and evaluation of the refined data. The proposed framework is easy to use and highly flexible. In this demo paper, we first introduce how to use this framework with some example use cases and then demonstrate its effectiveness in improving the data quality with an automated evaluation with ChatGPT and an end-to-end evaluation in pretraining the GPT-2 model. The code and demonstration videos are accessible on GitHub.

By leveraging the blur-noise trade-off, imaging with non-uniform exposures largely extends the image acquisition flexibility in harsh environments. However, the limitation of conventional cameras in perceiving intra-frame dynamic information prevents existing methods from being implemented in the real-world frame acquisition for real-time adaptive camera shutter control. To address this challenge, we propose a novel Neuromorphic Shutter Control (NSC) system to avoid motion blurs and alleviate instant noises, where the extremely low latency of events is leveraged to monitor the real-time motion and facilitate the scene-adaptive exposure. Furthermore, to stabilize the inconsistent Signal-to-Noise Ratio (SNR) caused by the non-uniform exposure times, we propose an event-based image denoising network within a self-supervised learning paradigm, i.e., SEID, exploring the statistics of image noises and inter-frame motion information of events to obtain artificial supervision signals for high-quality imaging in real-world scenes. To illustrate the effectiveness of the proposed NSC, we implement it in hardware by building a hybrid-camera imaging prototype system, with which we collect a real-world dataset containing well-synchronized frames and events in diverse scenarios with different target scenes and motion patterns. Experiments on the synthetic and real-world datasets demonstrate the superiority of our method over state-of-the-art approaches.

Diffusion models (DMs) have revolutionized image generation, producing high-quality images with applications spanning various fields. However, their ability to create hyper-realistic images poses significant challenges in distinguishing between real and synthetic content, raising concerns about digital authenticity and potential misuse in creating deepfakes. This work introduces a robust detection framework that integrates image and text features extracted by CLIP model with a Multilayer Perceptron (MLP) classifier. We propose a novel loss that can improve the detector's robustness and handle imbalanced datasets. Additionally, we flatten the loss landscape during the model training to improve the detector's generalization capabilities. The effectiveness of our method, which outperforms traditional detection techniques, is demonstrated through extensive experiments, underscoring its potential to set a new state-of-the-art approach in DM-generated image detection. The code is available at //github.com/Purdue-M2/Robust_DM_Generated_Image_Detection.

Neural networks are vulnerable to adversarial attacks, i.e., small input perturbations can significantly affect the outputs of a neural network. In safety-critical environments, the inputs often contain noisy sensor data; hence, in this case, neural networks that are robust against input perturbations are required. To ensure safety, the robustness of a neural network must be formally verified. However, training and formally verifying robust neural networks is challenging. We address both of these challenges by employing, for the first time, an end-to-end set-based training procedure that trains robust neural networks for formal verification. Our training procedure trains neural networks, which can be easily verified using simple polynomial-time verification algorithms. Moreover, our extensive evaluation demonstrates that our set-based training procedure effectively trains robust neural networks, which are easier to verify. Set-based trained neural networks consistently match or outperform those trained with state-of-the-art robust training approaches.

Graph Neural Networks (GNNs) offer a compact and computationally efficient way to learn embeddings and classifications on graph data. GNN models are frequently large, making distributed minibatch training necessary. The primary contribution of this paper is new methods for reducing communication in the sampling step for distributed GNN training. Here, we propose a matrix-based bulk sampling approach that expresses sampling as a sparse matrix multiplication (SpGEMM) and samples multiple minibatches at once. When the input graph topology does not fit on a single device, our method distributes the graph and use communication-avoiding SpGEMM algorithms to scale GNN minibatch sampling, enabling GNN training on much larger graphs than those that can fit into a single device memory. When the input graph topology (but not the embeddings) fits in the memory of one GPU, our approach (1) performs sampling without communication, (2) amortizes the overheads of sampling a minibatch, and (3) can represent multiple sampling algorithms by simply using different matrix constructions. In addition to new methods for sampling, we introduce a pipeline that uses our matrix-based bulk sampling approach to provide end-to-end training results. We provide experimental results on the largest Open Graph Benchmark (OGB) datasets on $128$ GPUs, and show that our pipeline is $2.5\times$ faster than Quiver (a distributed extension to PyTorch-Geometric) on a $3$-layer GraphSAGE network. On datasets outside of OGB, we show a $8.46\times$ speedup on $128$ GPUs in per-epoch time. Finally, we show scaling when the graph is distributed across GPUs and scaling for both node-wise and layer-wise sampling algorithms.

The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司