Video caching can significantly improve backhaul traffic congestion by locally storing the popular content that users frequently request. A privacy-preserving method is desirable to learn how users' demands change over time. As such, this paper proposes a novel resource-aware hierarchical federated learning (RawHFL) solution to predict users' future content requests under the realistic assumptions that content requests are sporadic and users' datasets can only be updated based on the requested content's information. Considering a partial client participation case, we first derive the upper bound of the global gradient norm that depends on the clients' local training rounds and the successful reception of their accumulated gradients over the wireless links. Under delay, energy and radio resource constraints, we then optimize client selection and their local rounds and central processing unit (CPU) frequencies to minimize a weighted utility function that facilitates RawHFL's convergence in an energy-efficient way. Our simulation results show that the proposed solution significantly outperforms the considered baselines in terms of prediction accuracy and total energy expenditure.
Untrained networks inspired by deep image prior have shown promising capabilities in recovering a high-quality image from noisy or partial measurements, without requiring training data. Their success has been widely attributed to the spectral bias acting as an implicit regularization induced by suitable network architectures. However, applications of such network-based priors often entail superfluous architectural decisions, overfitting risks, and slow optimization, all of which hinder their practicality. In this work, we propose efficient, architecture-agnostic methods for a more direct frequency control over the network priors: 1) constraining the bandwidth of the white-noise input, 2) controlling the bandwidth of the interpolation-based upsamplers, and 3) regularizing the Lipschitz constants of the layers. We show that even with just one extra line of code, the overfitting issues in underperforming architectures can be alleviated such that their performance gaps with the high-performing counterparts can be largely closed despite their distinct configurations, mitigating the need for architecture tuning. This then makes it possible to employ a more compact model to achieve similar or superior performance to larger models with greater efficiency. Our regularized network priors compare favorably with current supervised and self-supervised methods on MRI reconstruction and image inpainting tasks, serving as a stronger zero-shot baseline reconstructor. Our code will be made publicly available.
Reusable embeddings of user behaviour have shown significant performance improvements for the personalised saliency prediction task. However, prior works require explicit user characteristics and preferences as input, which are often difficult to obtain. We present a novel method to extract user embeddings from pairs of natural images and corresponding saliency maps generated from a small amount of user-specific eye tracking data. At the core of our method is a Siamese convolutional neural encoder that learns the user embeddings by contrasting the image and personal saliency map pairs of different users. Evaluations on two public saliency datasets show that the generated embeddings have high discriminative power, are effective at refining universal saliency maps to the individual users, and generalise well across users and images. Finally, based on our model's ability to encode individual user characteristics, our work points towards other applications that can benefit from reusable embeddings of gaze behaviour.
Pornographic content occurring in human-machine interaction dialogues can cause severe side effects for users in open-domain dialogue systems. However, research on detecting pornographic language within human-machine interaction dialogues is an important subject that is rarely studied. To advance in this direction, we introduce CensorChat, a dialogue monitoring dataset aimed at detecting whether the dialogue session contains pornographic content. To this end, we collect real-life human-machine interaction dialogues in the wild and break them down into single utterances and single-turn dialogues, with the last utterance spoken by the chatbot. We propose utilizing knowledge distillation of large language models to annotate the dataset. Specifically, first, the raw dataset is annotated by four open-source large language models, with the majority vote determining the label. Second, we use ChatGPT to update the empty label from the first step. Third, to ensure the quality of the validation and test sets, we utilize GPT-4 for label calibration. If the current label does not match the one generated by GPT-4, we employ a self-criticism strategy to verify its correctness. Finally, to facilitate the detection of pornographic text, we develop a series of text classifiers using a pseudo-labeled dataset. Detailed data analysis demonstrates that leveraging knowledge distillation techniques with large language models provides a practical and cost-efficient method for developing pornographic text detectors.
Ultrasound video-based breast lesion segmentation provides a valuable assistance in early breast lesion detection and treatment. However, existing works mainly focus on lesion segmentation based on ultrasound breast images which usually can not be adapted well to obtain desirable results on ultrasound videos. The main challenge for ultrasound video-based breast lesion segmentation is how to exploit the lesion cues of both intra-frame and inter-frame simultaneously. To address this problem, we propose a novel Spatial-Temporal Progressive Fusion Network (STPFNet) for video based breast lesion segmentation problem. The main aspects of the proposed STPFNet are threefold. First, we propose to adopt a unified network architecture to capture both spatial dependences within each ultrasound frame and temporal correlations between different frames together for ultrasound data representation. Second, we propose a new fusion module, termed Multi-Scale Feature Fusion (MSFF), to fuse spatial and temporal cues together for lesion detection. MSFF can help to determine the boundary contour of lesion region to overcome the issue of lesion boundary blurring. Third, we propose to exploit the segmentation result of previous frame as the prior knowledge to suppress the noisy background and learn more robust representation. In particular, we introduce a new publicly available ultrasound video breast lesion segmentation dataset, termed UVBLS200, which is specifically dedicated to breast lesion segmentation. It contains 200 videos, including 80 videos of benign lesions and 120 videos of malignant lesions. Experiments on the proposed dataset demonstrate that the proposed STPFNet achieves better breast lesion detection performance than state-of-the-art methods.
Efficient recommender systems play a crucial role in accurately capturing user and item attributes that mirror individual preferences. Some existing recommendation techniques have started to shift their focus towards modeling various types of interaction relations between users and items in real-world recommendation scenarios, such as clicks, marking favorites, and purchases on online shopping platforms. Nevertheless, these approaches still grapple with two significant shortcomings: (1) Insufficient modeling and exploitation of the impact of various behavior patterns formed by multiplex relations between users and items on representation learning, and (2) ignoring the effect of different relations in the behavior patterns on the target relation in recommender system scenarios. In this study, we introduce a novel recommendation framework, Dual-Channel Multiplex Graph Neural Network (DCMGNN), which addresses the aforementioned challenges. It incorporates an explicit behavior pattern representation learner to capture the behavior patterns composed of multiplex user-item interaction relations, and includes a relation chain representation learning and a relation chain-aware encoder to discover the impact of various auxiliary relations on the target relation, the dependencies between different relations, and mine the appropriate order of relations in a behavior pattern. Extensive experiments on three real-world datasets demonstrate that our \model surpasses various state-of-the-art recommendation methods. It outperforms the best baselines by 10.06\% and 12.15\% on average across all datasets in terms of R@10 and N@10 respectively.
Through legislation and technical advances users gain more control over how their data is processed, and they expect online services to respect their privacy choices and preferences. However, data may be processed for many different purposes by several layers of algorithms that create complex data workflows. To date, there is no existing approach to automatically satisfy fine-grained privacy constraints of a user in a way which optimises the service provider's gains from processing. In this article, we propose a solution to this problem by modelling a data flow as a graph. User constraints and processing purposes are pairs of vertices which need to be disconnected in this graph. In general, this problem is NP-hard, thus, we propose several heuristics and algorithms. We discuss the optimality versus efficiency of our algorithms and evaluate them using synthetically generated data. On the practical side, our algorithms can provide nearly optimal solutions for tens of constraints and graphs of thousands of nodes, in a few seconds.
Alignment with human preference prevents large language models (LLMs) from generating misleading or toxic content while requiring high-cost human feedback. Assuming resources of human annotation are limited, there are two different ways of allocating considered: more diverse PROMPTS or more diverse RESPONSES to be labeled. Nonetheless, a straightforward comparison between their impact is absent. In this work, we first control the diversity of both sides according to the number of samples for fine-tuning, which can directly reflect their influence. We find that instead of numerous prompts, more responses but fewer prompts better trigger LLMs for human alignment. Additionally, the concept of diversity for prompts can be more complex than responses that are typically quantified by single digits. Consequently, a new formulation of prompt diversity is proposed, further implying a linear correlation with the final performance of LLMs after fine-tuning. We also leverage it on data augmentation and conduct experiments to show its effect on different algorithms.
The ever-evolving social media discourse has witnessed an overwhelming use of memes to express opinions or dissent. Besides being misused for spreading malcontent, they are mined by corporations and political parties to glean the public's opinion. Therefore, memes predominantly offer affect-enriched insights towards ascertaining the societal psyche. However, the current approaches are yet to model the affective dimensions expressed in memes effectively. They rely extensively on large multimodal datasets for pre-training and do not generalize well due to constrained visual-linguistic grounding. In this paper, we introduce MOOD (Meme emOtiOns Dataset), which embodies six basic emotions. We then present ALFRED (emotion-Aware muLtimodal Fusion foR Emotion Detection), a novel multimodal neural framework that (i) explicitly models emotion-enriched visual cues, and (ii) employs an efficient cross-modal fusion via a gating mechanism. Our investigation establishes ALFRED's superiority over existing baselines by 4.94% F1. Additionally, ALFRED competes strongly with previous best approaches on the challenging Memotion task. We then discuss ALFRED's domain-agnostic generalizability by demonstrating its dominance on two recently-released datasets - HarMeme and Dank Memes, over other baselines. Further, we analyze ALFRED's interpretability using attention maps. Finally, we highlight the inherent challenges posed by the complex interplay of disparate modality-specific cues toward meme analysis.
Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.