亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cyclic motions are fundamental patterns in robotic applications including industrial manipulation and legged robot locomotion. This paper proposes an approach for the online modulation of cyclic motions in robotic applications. For this purpose, we present an integrated programmable Central Pattern Generator (CPG) for the online generation of the reference joint trajectory of a robotic system out of a library of desired periodic motions. The reference trajectory is then followed by the lower-level controller of the robot. The proposed CPG generates a smooth reference joint trajectory convergence to the desired one while preserving the position and velocity joint limits of the robot. The integrated programmable CPG consists of one novel bounded output programmable oscillator. We design the programmable oscillator for encoding the desired multidimensional periodic trajectory as a stable limit cycle. We also use the state transformation method to ensure that the oscillator's output and its first-time derivative preserve the joint position and velocity limits of the robot. With the help of Lyapunov-based arguments, We prove that the proposed CPG provides the global stability and convergence of the desired trajectory. The effectiveness of the proposed integrated CPG for trajectory generation is shown in a passive rehabilitation scenario on the Kuka iiwa robot arm, and also in a walking simulation on a seven-link bipedal robot.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Rule sets are highly interpretable logical models in which the predicates for decision are expressed in disjunctive normal form (DNF, OR-of-ANDs), or, equivalently, the overall model comprises an unordered collection of if-then decision rules. In this paper, we consider a submodular optimization based approach for learning rule sets. The learning problem is framed as a subset selection task in which a subset of all possible rules needs to be selected to form an accurate and interpretable rule set. We employ an objective function that exhibits submodularity and thus is amenable to submodular optimization techniques. To overcome the difficulty arose from dealing with the exponential-sized ground set of rules, the subproblem of searching a rule is casted as another subset selection task that asks for a subset of features. We show it is possible to write the induced objective function for the subproblem as a difference of two submodular (DS) functions to make it approximately solvable by DS optimization algorithms. Overall, the proposed approach is simple, scalable, and likely to be benefited from further research on submodular optimization. Experiments on real datasets demonstrate the effectiveness of our method.

In this paper, we are concerned with the numerical solution for the two-dimensional time fractional Fokker-Planck equation with tempered fractional derivative of order $\alpha$. Although some of its variants are considered in many recent numerical analysis papers, there are still some significant differences. Here we first provide the regularity estimates of the solution. And then a modified $L$1 scheme inspired by the middle rectangle quadrature formula on graded meshes is employed to compensate for the singularity of the solution at $t\rightarrow 0^{+}$, while the five-point difference scheme is used in space. Stability and convergence are proved in the sence of $L^{\infty}$ norm, then a sharp error estimate $\mathscr{O}(\tau^{\min\{2-\alpha, r\alpha\}})$ is derived on graded meshes. Furthermore, unlike the bounds proved in the previous works, the constant multipliers in our analysis do not blow up as the Caputo fractional derivative $\alpha$ approaches the classical value of 1. Finally, we perform the numerical experiments to verify the effectiveness and convergence order of the presented algorithms.

We develop an \textit{a posteriori} error analysis for a numerical estimate of the time at which a functional of the solution to a partial differential equation (PDE) first achieves a threshold value on a given time interval. This quantity of interest (QoI) differs from classical QoIs which are modeled as bounded linear (or nonlinear) functionals {of the solution}. Taylor's theorem and an adjoint-based \textit{a posteriori} analysis is used to derive computable and accurate error estimates in the case of semi-linear parabolic and hyperbolic PDEs. The accuracy of the error estimates is demonstrated through numerical solutions of the one-dimensional heat equation and linearized shallow water equations (SWE), representing parabolic and hyperbolic cases, respectively.

Scientists and inventors around the world are more plentiful and interconnected today than ever before. But while there are more people making discoveries, and more ideas that can be reconfigured in novel ways, research suggests that new ideas are getting harder to find-contradicting recombinant growth theory. In this paper, we shed new light on this apparent puzzle. Analyzing 20 million research articles and 4 million patent applications across the globe over the past half-century, we begin by documenting the rise of remote collaboration across locations, underlining the growing interconnectedness of scientists and inventors globally. However, we also show that for all fields, periods, and team sizes, researchers in these distributed teams are consistently less likely to make breakthrough discoveries relative to their onsite counterparts. Using a novel dataset that allows us to explore the division of labor within each team, we find that distributed team members tend to collaborate in technical tasks-like collecting and analyzing data-but are less likely to join forces in conceptual tasks, such as conceiving new ideas and designing research. Hence, while remote teams collaborate in theory, actual cooperation centers on late-stage, technical project tasks, involving more codified knowledge. We conclude that despite striking improvements in remote work technology in recent years, remote teams are less likely to integrate existing knowledge to produce new, disruptive ideas. This also provides an explanation for why new ideas are getting harder to find.

In this work we investigate a 1D evolution equation involving a divergence form operator where the diffusion coefficient inside the divergence is sign changing. Equivalently the evolution equation of interest can be interpreted as behaving locally like a heat equation, and involving a transmission condition at some interface that prescribes in particular a change of sign of the first order space derivatives across the interface. We especially focus on the construction of fundamental solutions for the evolution equation. As the second order operator involved in the evolution equation is not elliptic, this cannot be performed by standard tools for parabolic PDEs. However we manage in a first time to provide a spectral representation of the semigroup associated to the equation, which leads to a first expression of the fundamental solution. In a second time, examining the case when the diffusion coefficient is piecewise constant but remains positive, we do probabilistic computations involving the killed Skew Brownian Motion (SBM), that provide a certain explicit expression of the fundamental solution for the positive case. It turns out that this expression also provides a fundamental solution for the case when the coefficient is sign changing, and can be interpreted as defining a pseudo SBM. This pseudo SBM can be approached by a rescaled pseudo asymmetric random walk. We infer from these different results various approximation schemes that we test numerically.

The ability to accurately predict human behavior is central to the safety and efficiency of robot autonomy in interactive settings. Unfortunately, robots often lack access to key information on which these predictions may hinge, such as people's goals, attention, and willingness to cooperate. Dual control theory addresses this challenge by treating unknown parameters of a predictive model as stochastic hidden states and inferring their values at runtime using information gathered during system operation. While able to optimally and automatically trade off exploration and exploitation, dual control is computationally intractable for general interactive motion planning, mainly due to the fundamental coupling between robot trajectory optimization and human intent inference. In this paper, we present a novel algorithmic approach to enable active uncertainty reduction for interactive motion planning based on the implicit dual control paradigm. Our approach relies on sampling-based approximation of stochastic dynamic programming, leading to a model predictive control problem that can be readily solved by real-time gradient-based optimization methods. The resulting policy is shown to preserve the dual control effect for a broad class of predictive human models with both continuous and categorical uncertainty. The efficacy of our approach is demonstrated with simulated driving examples.

The availability of massive image databases resulted in the development of scalable machine learning methods such as convolutional neural network (CNNs) filtering and processing these data. While the very recent theoretical work on CNNs focuses on standard nonparametric denoising problems, the variability in image classification datasets does, however, not originate from additive noise but from variation of the shape and other characteristics of the same object across different images. To address this problem, we consider a simple supervised classification problem for object detection on grayscale images. While from the function estimation point of view, every pixel is a variable and large images lead to high-dimensional function recovery tasks suffering from the curse of dimensionality, increasing the number of pixels in our image deformation model enhances the image resolution and makes the object classification problem easier. We propose and theoretically analyze two different procedures. The first method estimates the image deformation by support alignment. Under a minimal separation condition, it is shown that perfect classification is possible. The second method fits a CNN to the data. We derive a rate for the misclassification error depending on the sample size and the number of pixels. Both classifiers are empirically compared on images generated from the MNIST handwritten digit database. The obtained results corroborate the theoretical findings.

Collision avoidance for multirobot systems is a well-studied problem. Recently, control barrier functions (CBFs) have been proposed for synthesizing controllers that guarantee collision avoidance and goal stabilization for multiple robots. However, it has been noted that reactive control synthesis methods (such as CBFs) are prone to \textit{deadlock}, an equilibrium of system dynamics that causes the robots to stall before reaching their goals. In this paper, we analyze the closed-loop dynamics of robots using CBFs, to characterize controller parameters, initial conditions, and goal locations that invariably lead the system to deadlock. Using tools from duality theory, we derive geometric properties of robot configurations of an $N$ robot system once it is in deadlock and we justify them using the mechanics interpretation of KKT conditions. Our key deductions are that 1) system deadlock is characterized by a force-equilibrium on robots and 2) deadlock occurs to ensure safety when safety is on the brink of being violated. These deductions allow us to interpret deadlock as a subset of the state space, and we show that this set is non-empty and located on the boundary of the safe set. By exploiting these properties, we analyze the number of admissible robot configurations in deadlock and develop a provably-correct decentralized algorithm for deadlock resolution to safely deliver the robots to their goals. This algorithm is validated in simulations as well as experimentally on Khepera-IV robots.

High-dimensional parabolic partial integro-differential equations (PIDEs) appear in many applications in insurance and finance. Existing numerical methods suffer from the curse of dimensionality or provide solutions only for a given space-time point. This gave rise to a growing literature on deep learning based methods for solving partial differential equations; results for integro-differential equations on the other hand are scarce. In this paper we consider an extension of the deep splitting scheme due to arXiv:1907.03452 and arXiv:2006.01496v3 to PIDEs. Our main contribution is an analysis of the approximation error which yields convergence rates in terms of the number of neurons for shallow neural networks. Moreover we discuss several test case studies to show the viability of our approach.

The encoder network of an autoencoder is an approximation of the nearest point projection onto the manifold spanned by the decoder. A concern with this approximation is that, while the output of the encoder is always unique, the projection can possibly have infinitely many values. This implies that the latent representations learned by the autoencoder can be misleading. Borrowing from geometric measure theory, we introduce the idea of using the reach of the manifold spanned by the decoder to determine if an optimal encoder exists for a given dataset and decoder. We develop a local generalization of this reach and propose a numerical estimator thereof. We demonstrate that this allows us to determine which observations can be expected to have a unique, and thereby trustworthy, latent representation. As our local reach estimator is differentiable, we investigate its usage as a regularizer and show that this leads to learned manifolds for which projections are more often unique than without regularization.

北京阿比特科技有限公司