The Kolmogorov $N$-width describes the best possible error one can achieve by elements of an $N$-dimensional linear space. Its decay has extensively been studied in Approximation Theory and for the solution of Partial Differential Equations (PDEs). Particular interest has occurred within Model Order Reduction (MOR) of parameterized PDEs e.g.\ by the Reduced Basis Method (RBM). While it is known that the $N$-width decays exponentially fast (and thus admits efficient MOR) for certain problems, there are examples of the linear transport and the wave equation, where the decay rate deteriorates to $N^{-1/2}$. On the other hand, it is widely accepted that a smooth parameter dependence admits a fast decay of the $N$-width. However, a detailed analysis of the influence of properties of the data (such as regularity or slope) on the rate of the $N$-width seems to lack. In this paper, we use techniques from Fourier Analysis to derive exact representations of the $N$-width in terms of initial and boundary conditions of the linear transport equation modeled by some function $g$ for half-wave symmetric data. For arbitrary functions $g$, we derive bounds and prove that these bounds are sharp. In particular, we prove that the $N$-width decays as $c_r N^{-(r+1/2)}$ for functions in the Sobolev space, $g\in H^r$. Our theoretical investigations are complemented by numerical experiments which confirm the sharpness of our bounds and give additional quantitative insight.
In this paper, we establish a sharp upper bound on the the number of fixed points a certain class of neural networks can have. The networks under study (autoencoders) can be viewed as discrete dynamical systems whose nonlinearities are given by the choice of activation functions. To this end, we introduce a new class $\mathcal{F}$ of $C^1$ activation functions that is closed under composition, and contains e.g. the logistic sigmoid function. We use this class to show that any 1-dimensional neural network of arbitrary depth with activation functions in $\mathcal{F}$ has at most three fixed points. Due to the simple nature of such networks, we are able to completely understand their fixed points, providing a foundation to the much needed connection between application and theory of deep neural networks.
In this work we propose tailored model order reduction for varying boundary optimal control problems governed by parametric partial differential equations. With varying boundary control, we mean that a specific parameter changes where the boundary control acts on the system. This peculiar formulation might benefit from model order reduction. Indeed, fast and reliable simulations of this model can be of utmost usefulness in many applied fields, such as geophysics and energy engineering. However, varying boundary control features very complicated and diversified parametric behaviour for the state and adjoint variables. The state solution, for example, changing the boundary control parameter, might feature transport phenomena. Moreover, the problem loses its affine structure. It is well known that classical model order reduction techniques fail in this setting, both in accuracy and in efficiency. Thus, we propose reduced approaches inspired by the ones used when dealing with wave-like phenomena. Indeed, we compare standard proper orthogonal decomposition with two tailored strategies: geometric recasting and local proper orthogonal decomposition. Geometric recasting solves the optimization system in a reference domain simplifying the problem at hand avoiding hyper-reduction, while local proper orthogonal decomposition builds local bases to increase the accuracy of the reduced solution in very general settings (where geometric recasting is unfeasible). We compare the various approaches on two different numerical experiments based on geometries of increasing complexity.
Suitable representations of dynamical systems can simplify their analysis and control. On this line of thought, this paper considers the input decoupling problem for input-affine Lagrangian dynamics, namely the problem of finding a transformation of the generalized coordinates that decouples the input channels. We identify a class of systems for which this problem is solvable. Such systems are called collocated because the decoupling variables correspond to the coordinates on which the actuators directly perform work. Under mild conditions on the input matrix, a simple test is presented to verify whether a system is collocated or not. By exploiting power invariance, it is proven that a change of coordinates decouples the input channels if and only if the dynamics is collocated. We illustrate the theoretical results by considering several Lagrangian systems, focusing on underactuated mechanical systems, for which novel controllers that exploit input decoupling are designed.
Recent advancements in testing differential item functioning (DIF) have greatly relaxed restrictions made by the conventional multiple group item response theory (IRT) model with respect to the number of grouping variables and the assumption of predefined DIF-free anchor items. The application of the $L_1$ penalty in DIF detection has shown promising results in identifying a DIF item without a priori knowledge on anchor items while allowing the simultaneous investigation of multiple grouping variables. The least absolute shrinkage and selection operator (LASSO) is added directly to the loss function to encourage variable sparsity such that DIF parameters of anchor items are penalized to be zero. Therefore, no predefined anchor items are needed. However, DIF detection using LASSO requires a non-trivial model selection consistency assumption and is difficult to draw statistical inference. Given the importance of identifying DIF items in test development, this study aims to apply the decorrelated score test to test DIF once the penalized method is used. Unlike the existing regularized DIF method which is unable to test the statistical significance of a DIF item selected by LASSO, the decorrelated score test requires weaker assumptions and is able to provide asymptotically valid inference to test DIF. Additionally, the deccorrelated score function can be used to construct asymptotically unbiased normal and efficient DIF parameter estimates via a one-step correction. The performance of the proposed decorrelated score test and the one-step estimator are evaluated via a Monte Carlo simulation study.
Privacy is a central challenge for systems that learn from sensitive data sets, especially when a system's outputs must be continuously updated to reflect changing data. We consider the achievable error for the differentially private continual release of a basic statistic -- the number of distinct items -- in a stream where items may be both inserted and deleted (the turnstile model). With only insertions, existing algorithms have additive error just polylogarithmic in the length of the stream $T$. We uncover a much richer landscape in the turnstile model, even without considering memory restrictions. We show that any differentially private mechanism that handles insertions and deletions has worst-case additive error at least $T^{1/4}$ even under a relatively weak, event-level privacy definition. Then, we identify a property of the input stream, its maximum flippancy, that is low for natural data streams and for which one can give tight parameterized error guarantees. Specifically, the maximum flippancy is the largest number of times the count of a single item changes from a positive number to zero over the course of the stream. We present an item-level differentially private mechanism that, for all turnstile streams with maximum flippancy $w$, continually outputs the number of distinct elements with an $O(\sqrt{w} \cdot \mathsf{poly}\log T)$ additive error, without requiring prior knowledge of $w$. This is the best achievable error bound that depends only on $w$, for a large range of values of $w$. When $w$ is small, our mechanism provides similar error guarantees to the polylogarithmic in $T$ guarantees in the insertion-only setting, bypassing the hardness in the turnstile model.
Test of independence is of fundamental importance in modern data analysis, with broad applications in variable selection, graphical models, and causal inference. When the data is high dimensional and the potential dependence signal is sparse, independence testing becomes very challenging without distributional or structural assumptions. In this paper, we propose a general framework for independence testing by first fitting a classifier that distinguishes the joint and product distributions, and then testing the significance of the fitted classifier. This framework allows us to borrow the strength of the most advanced classification algorithms developed from the modern machine learning community, making it applicable to high dimensional, complex data. By combining a sample split and a fixed permutation, our test statistic has a universal, fixed Gaussian null distribution that is independent of the underlying data distribution. Extensive simulations demonstrate the advantages of the newly proposed test compared with existing methods. We further apply the new test to a single-cell data set to test the independence between two types of single-cell sequencing measurements, whose high dimensionality and sparsity make existing methods hard to apply.
The $\alpha$-$\eta$-$\kappa$-$\mu$ is one of the most generalized and flexible channel models having an excellent fit to experimental data from diverse propagation environments. The existing statistical results on the envelope of $\alpha$-$\eta$-$\kappa$-$\mu$ model contain an infinite series involving regularized hypergeometric function and generalized Laguerre polynomial, prohibiting its widespread application in the performance analysis of wireless systems. In this paper, we employ a novel approach to derive density and distribution functions of the envelope of the $\alpha$-$\eta$-$\kappa$-$\mu$ fading channel without an infinite series approximation. The derived statistical results are presented using a single Fox's H-function for tractable performance analysis and efficient numerical computations, especially for high-frequency mmWave and terahertz wireless transmissions. To gain insight into the distribution of channel envelope, we develop an asymptotic analysis using a more straightforward Gamma function converging to the exact within a reasonable range of channel parameters. To further substantiate the proposed analysis, we present the exact outage probability and average bit-error-rate (BER) performance of a wireless link subjected to the $\alpha$-$\eta$-$\kappa$-$\mu$ fading model using a single tri-variate Fox's H-function. We obtain the diversity order of the system by analyzing the outage probability at a high signal-to-noise (SNR) ratio. We use numerical and simulation analysis to demonstrate the significance of the developed statistical results compared with the existing infinite series representation for the envelope of the $\alpha$-$\eta$-$\kappa$-$\mu$ model.
Finite element methods and kinematically coupled schemes that decouple the fluid velocity and structure's displacement have been extensively studied for incompressible fluid-structure interaction (FSI) over the past decade. While these methods are known to be stable and easy to implement, optimal error analysis has remained challenging. Previous work has primarily relied on the classical elliptic projection technique, which is only suitable for parabolic problems and does not lead to optimal convergence of numerical solutions to the FSI problems in the standard $L^2$ norm. In this article, we propose a new kinematically coupled scheme for incompressible FSI thin-structure model and establish a new framework for the numerical analysis of FSI problems in terms of a newly introduced coupled non-stationary Ritz projection, which allows us to prove the optimal-order convergence of the proposed method in the $L^2$ norm. The methodology presented in this article is also applicable to numerous other FSI models and serves as a fundamental tool for advancing research in this field.
In this paper we investigate formal verification problems for Neural Network computations. Various reachability problems will be in the focus, such as: Given symbolic specifications of allowed inputs and outputs in form of Linear Programming instances, one question is whether valid inputs exist such that the given network computes a valid output? Does this property hold for all valid inputs? The former question's complexity has been investigated recently by S\"alzer and Lange for nets using the Rectified Linear Unit and the identity function as their activation functions. We complement their achievements by showing that the problem is NP-complete for piecewise linear functions with rational coefficients that are not linear, NP-hard for almost all suitable activation functions including non-linear ones that are continuous on an interval, complete for the Existential Theory of the Reals $\exists \mathbb R$ for every non-linear polynomial and $\exists \mathbb R$-hard for the exponential function and various sigmoidal functions. For the completeness results, linking the verification tasks with the theory of Constraint Satisfaction Problems turns out helpful.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.