A growing body of work has focused on text classification methods for detecting the increasing amount of hate speech posted online. This progress has been limited to only a select number of highly-resourced languages causing detection systems to either under-perform or not exist in limited data contexts. This is majorly caused by a lack of training data which is expensive to collect and curate in these settings. In this work, we propose a data augmentation approach that addresses the problem of lack of data for online hate speech detection in limited data contexts using synthetic data generation techniques. Given a handful of hate speech examples in a high-resource language such as English, we present three methods to synthesize new examples of hate speech data in a target language that retains the hate sentiment in the original examples but transfers the hate targets. We apply our approach to generate training data for hate speech classification tasks in Hindi and Vietnamese. Our findings show that a model trained on synthetic data performs comparably to, and in some cases outperforms, a model trained only on the samples available in the target domain. This method can be adopted to bootstrap hate speech detection models from scratch in limited data contexts. As the growth of social media within these contexts continues to outstrip response efforts, this work furthers our capacities for detection, understanding, and response to hate speech.
The recent introduction of synthetic correlated diffusion (CDI$^s$) imaging has demonstrated significant potential in the realm of clinical decision support for prostate cancer (PCa). CDI$^s$ is a new form of magnetic resonance imaging (MRI) designed to characterize tissue characteristics through the joint correlation of diffusion signal attenuation across different Brownian motion sensitivities. Despite the performance improvement, the CDI$^s$ data for PCa has not been previously made publicly available. In our commitment to advance research efforts for PCa, we introduce Cancer-Net PCa-Data, an open-source benchmark dataset of volumetric CDI$^s$ imaging data of PCa patients. Cancer-Net PCa-Data consists of CDI$^s$ volumetric images from a patient cohort of 200 patient cases, along with full annotations (gland masks, tumor masks, and PCa diagnosis for each tumor). We also analyze the demographic and label region diversity of Cancer-Net PCa-Data for potential biases. Cancer-Net PCa-Data is the first-ever public dataset of CDI$^s$ imaging data for PCa, and is a part of the global open-source initiative dedicated to advancement in machine learning and imaging research to aid clinicians in the global fight against cancer.
The prediction of future insurance claims based on observed risk factors, or covariates, help the actuary set insurance premiums. Typically, actuaries use parametric regression models to predict claims based on the covariate information. Such models assume the same functional form tying the response to the covariates for each data point. These models are not flexible enough and can fail to accurately capture at the individual level, the relationship between the covariates and the claims frequency and severity, which are often multimodal, highly skewed, and heavy-tailed. In this article, we explore the use of Bayesian nonparametric (BNP) regression models to predict claims frequency and severity based on covariates. In particular, we model claims frequency as a mixture of Poisson regression, and the logarithm of claims severity as a mixture of normal regression. We use the Dirichlet process (DP) and Pitman-Yor process (PY) as a prior for the mixing distribution over the regression parameters. Unlike parametric regression, such models allow each data point to have its individual parameters, making them highly flexible, resulting in improved prediction accuracy. We describe model fitting using MCMC and illustrate their applicability using French motor insurance claims data.
Although humans have five basic senses, sight, hearing, touch, smell, and taste, most multimedia systems in current systems only capture two of them, namely, sight and hearing. With the development of the metaverse and related technologies, there is a growing need for a more immersive media format that leverages all human senses. Multisensory media(Mulsemedia) that can stimulate multiple senses will play a critical role in the near future. This paper provides an overview of the history, background, use cases, existing research, devices, and standards of mulsemedia. Emerging mulsemedia technologies such as Extended Reality (XR) and Holographic-Type Communication (HTC) are introduced. Additionally, the challenges in mulsemedia research from the perspective of wireless communication and networking are discussed. The potential of 6G wireless systems to address these challenges is highlighted, and several research directions that can advance mulsemedia communications are identified.
Neural network models have achieved high performance on a wide variety of complex tasks, but the algorithms that they implement are notoriously difficult to interpret. In order to understand these algorithms, it is often necessary to hypothesize intermediate variables involved in the network's computation. For example, does a language model depend on particular syntactic properties when generating a sentence? However, existing analysis tools make it difficult to test hypotheses of this type. We propose a new analysis technique -- circuit probing -- that automatically uncovers low-level circuits that compute hypothesized intermediate variables. This enables causal analysis through targeted ablation at the level of model parameters. We apply this method to models trained on simple arithmetic tasks, demonstrating its effectiveness at (1) deciphering the algorithms that models have learned, (2) revealing modular structure within a model, and (3) tracking the development of circuits over training. We compare circuit probing to other methods across these three experiments, and find it on par or more effective than existing analysis methods. Finally, we demonstrate circuit probing on a real-world use case, uncovering circuits that are responsible for subject-verb agreement and reflexive anaphora in GPT2-Small and Medium.
In this paper, we propose a deep generative time series approach using latent temporal processes for modeling and holistically analyzing complex disease trajectories. We aim to find meaningful temporal latent representations of an underlying generative process that explain the observed disease trajectories in an interpretable and comprehensive way. To enhance the interpretability of these latent temporal processes, we develop a semi-supervised approach for disentangling the latent space using established medical concepts. By combining the generative approach with medical knowledge, we leverage the ability to discover novel aspects of the disease while integrating medical concepts into the model. We show that the learned temporal latent processes can be utilized for further data analysis and clinical hypothesis testing, including finding similar patients and clustering the disease into new sub-types. Moreover, our method enables personalized online monitoring and prediction of multivariate time series including uncertainty quantification. We demonstrate the effectiveness of our approach in modeling systemic sclerosis, showcasing the potential of our machine learning model to capture complex disease trajectories and acquire new medical knowledge.
We propose a theoretical framework for formulating language model decoder algorithms with dynamic programming and information theory. With dynamic programming, we lift the design of decoder algorithms from the logit space to the action-state value function space, and show that the decoding algorithms are consequences of optimizing the action-state value functions. Each component in the action-state value function space has an information theoretical interpretation. With the lifting and interpretation, it becomes evident what the decoder algorithm is optimized for, and hence facilitating the arbitration of the tradeoffs in sensibleness, diversity, and attribution.
Recent observations have underscored a disparity between the inflated benchmark scores and the actual performance of LLMs, raising concerns about potential contamination of evaluation benchmarks. This issue is especially critical for closed-source models and certain open-source models where training data transparency is lacking. In this paper we study data contamination by proposing two methods tailored for both open-source and proprietary LLMs. We first introduce a retrieval-based system to explore potential overlaps between evaluation benchmarks and pretraining corpora. We further present a novel investigation protocol named \textbf{T}estset \textbf{S}lot Guessing (\textit{TS-Guessing}), applicable to both open and proprietary models. This approach entails masking a wrong answer in a multiple-choice question and prompting the model to fill in the gap. Additionally, it involves obscuring an unlikely word in an evaluation example and asking the model to produce it. We find that certain commercial LLMs could surprisingly guess the missing option in various test sets. Specifically, in the TruthfulQA benchmark, we find that LLMs exhibit notable performance improvement when provided with additional metadata in the benchmark. Further, in the MMLU benchmark, ChatGPT and GPT-4 demonstrated an exact match rate of 52\% and 57\%, respectively, in guessing the missing options in benchmark test data. We hope these results underscore the need for more robust evaluation methodologies and benchmarks in the field.
Chain-of-Thought (CoT) prompting has boosted the multi-step reasoning capabilities of Large Language Models (LLMs) by generating a series of rationales before the final answer. We analyze the reasoning paths generated by CoT and find two issues in multi-step reasoning: (i) Generating rationales irrelevant to the question, (ii) Unable to compose subquestions or queries for generating/retrieving all the relevant information. To address them, we propose a graph-guided CoT prompting method, which guides the LLMs to reach the correct answer with graph representation/verification steps. Specifically, we first leverage LLMs to construct a "question/rationale graph" by using knowledge extraction prompting given the initial question and the rationales generated in the previous steps. Then, the graph verification step diagnoses the current rationale triplet by comparing it with the existing question/rationale graph to filter out irrelevant rationales and generate follow-up questions to obtain relevant information. Additionally, we generate CoT paths that exclude the extracted graph information to represent the context information missed from the graph extraction. Our graph-guided reasoning method shows superior performance compared to previous CoT prompting and the variants on multi-hop question answering benchmark datasets.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.