Federated learning (FL) has emerged as an important machine learning paradigm where a global model is trained based on the private data from distributed clients. However, most of existing FL algorithms cannot guarantee the performance fairness towards different clients or different groups of samples because of the distribution shift. Recent researches focus on achieving fairness among clients, but they ignore the fairness towards different groups formed by sensitive attribute(s) (e.g., gender and/or race), which is important and practical in real applications. To bridge this gap, we formulate the goal of unified group fairness on FL which is to learn a fair global model with similar performance on different groups. To achieve the unified group fairness for arbitrary sensitive attribute(s), we propose a novel FL algorithm, named Group Distributionally Robust Federated Averaging (G-DRFA), which mitigates the distribution shift across groups with theoretical analysis of convergence rate. Specifically, we treat the performance of the federated global model at each group as an objective and employ the distributionally robust techniques to maximize the performance of the worst-performing group over an uncertainty set by group reweighting. We validate the advantages of the G-DRFA algorithm with various kinds of distribution shift settings in experiments, and the results show that G-DRFA algorithm outperforms the existing fair federated learning algorithms on unified group fairness.
We study an online learning problem subject to the constraint of individual fairness, which requires that similar individuals are treated similarly. Unlike prior work on individual fairness, we do not assume the similarity measure among individuals is known, nor do we assume that such measure takes a certain parametric form. Instead, we leverage the existence of an auditor who detects fairness violations without enunciating the quantitative measure. In each round, the auditor examines the learner's decisions and attempts to identify a pair of individuals that are treated unfairly by the learner. We provide a general reduction framework that reduces online classification in our model to standard online classification, which allows us to leverage existing online learning algorithms to achieve sub-linear regret and number of fairness violations. Surprisingly, in the stochastic setting where the data are drawn independently from a distribution, we are also able to establish PAC-style fairness and accuracy generalization guarantees (Yona and Rothblum [2018]), despite only having access to a very restricted form of fairness feedback. Our fairness generalization bound qualitatively matches the uniform convergence bound of Yona and Rothblum [2018], while also providing a meaningful accuracy generalization guarantee. Our results resolve an open question by Gillen et al. [2018] by showing that online learning under an unknown individual fairness constraint is possible even without assuming a strong parametric form of the underlying similarity measure.
Federated learning (FL) is experiencing a fast booming with the wave of distributed machine learning. In the FL paradigm, the global model is aggregated on the centralized aggregation server according to the parameters of local models instead of local training data, mitigating privacy leakage caused by the collection of sensitive information. With the increased computing and communication capabilities of edge and IoT devices, applying FL on heterogeneous devices to train machine learning models becomes a trend. The synchronous aggregation strategy in the classic FL paradigm cannot effectively use the limited resource, especially on heterogeneous devices, due to its waiting for straggler devices before aggregation in each training round. Furthermore, the disparity of data spread on devices (i.e. data heterogeneity) in real-world scenarios downgrades the accuracy of models. As a result, many asynchronous FL (AFL) paradigms are presented in various application scenarios to improve efficiency, performance, privacy, and security. This survey comprehensively analyzes and summarizes existing variants of AFL according to a novel classification mechanism, including device heterogeneity, data heterogeneity, privacy and security on heterogeneous devices, and applications on heterogeneous devices. Finally, this survey reveals rising challenges and presents potentially promising research directions in this under-investigated field.
Local Stochastic Gradient Descent (SGD) with periodic model averaging (FedAvg) is a foundational algorithm in Federated Learning. The algorithm independently runs SGD on multiple workers and periodically averages the model across all the workers. When local SGD runs with many workers, however, the periodic averaging causes a significant model discrepancy across the workers making the global loss converge slowly. While recent advanced optimization methods tackle the issue focused on non-IID settings, there still exists the model discrepancy issue due to the underlying periodic model averaging. We propose a partial model averaging framework that mitigates the model discrepancy issue in Federated Learning. The partial averaging encourages the local models to stay close to each other on parameter space, and it enables to more effectively minimize the global loss. Given a fixed number of iterations and a large number of workers (128), the partial averaging achieves up to 2.2% higher validation accuracy than the periodic full averaging.
Fair machine learning aims to mitigate the biases of model predictions against certain subpopulations regarding sensitive attributes such as race and gender. Among the many existing fairness notions, counterfactual fairness measures the model fairness from a causal perspective by comparing the predictions of each individual from the original data and the counterfactuals. In counterfactuals, the sensitive attribute values of this individual had been modified. Recently, a few works extend counterfactual fairness to graph data, but most of them neglect the following facts that can lead to biases: 1) the sensitive attributes of each node's neighbors may causally affect the prediction w.r.t. this node; 2) the sensitive attributes may causally affect other features and the graph structure. To tackle these issues, in this paper, we propose a novel fairness notion - graph counterfactual fairness, which considers the biases led by the above facts. To learn node representations towards graph counterfactual fairness, we propose a novel framework based on counterfactual data augmentation. In this framework, we generate counterfactuals corresponding to perturbations on each node's and their neighbors' sensitive attributes. Then we enforce fairness by minimizing the discrepancy between the representations learned from the original graph and the counterfactuals for each node. Experiments on both synthetic and real-world graphs show that our framework outperforms the state-of-the-art baselines in graph counterfactual fairness, and also achieves comparable prediction performance.
Fairness has emerged as a critical problem in federated learning (FL). In this work, we identify a cause of unfairness in FL -- \emph{conflicting} gradients with large differences in the magnitudes. To address this issue, we propose the federated fair averaging (FedFV) algorithm to mitigate potential conflicts among clients before averaging their gradients. We first use the cosine similarity to detect gradient conflicts, and then iteratively eliminate such conflicts by modifying both the direction and the magnitude of the gradients. We further show the theoretical foundation of FedFV to mitigate the issue conflicting gradients and converge to Pareto stationary solutions. Extensive experiments on a suite of federated datasets confirm that FedFV compares favorably against state-of-the-art methods in terms of fairness, accuracy and efficiency.
Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.
When the federated learning is adopted among competitive agents with siloed datasets, agents are self-interested and participate only if they are fairly rewarded. To encourage the application of federated learning, this paper employs a management strategy, i.e., more contributions should lead to more rewards. We propose a novel hierarchically fair federated learning (HFFL) framework. Under this framework, agents are rewarded in proportion to their pre-negotiated contribution levels. HFFL+ extends this to incorporate heterogeneous models. Theoretical analysis and empirical evaluation on several datasets confirm the efficacy of our frameworks in upholding fairness and thus facilitating federated learning in the competitive settings.
The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.
Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.
In federated learning, multiple client devices jointly learn a machine learning model: each client device maintains a local model for its local training dataset, while a master device maintains a global model via aggregating the local models from the client devices. The machine learning community recently proposed several federated learning methods that were claimed to be robust against Byzantine failures (e.g., system failures, adversarial manipulations) of certain client devices. In this work, we perform the first systematic study on local model poisoning attacks to federated learning. We assume an attacker has compromised some client devices, and the attacker manipulates the local model parameters on the compromised client devices during the learning process such that the global model has a large testing error rate. We formulate our attacks as optimization problems and apply our attacks to four recent Byzantine-robust federated learning methods. Our empirical results on four real-world datasets show that our attacks can substantially increase the error rates of the models learnt by the federated learning methods that were claimed to be robust against Byzantine failures of some client devices. We generalize two defenses for data poisoning attacks to defend against our local model poisoning attacks. Our evaluation results show that one defense can effectively defend against our attacks in some cases, but the defenses are not effective enough in other cases, highlighting the need for new defenses against our local model poisoning attacks to federated learning.