We propose an improved convergence analysis technique that characterizes the distributed learning paradigm of federated learning (FL) with imperfect/noisy uplink and downlink communications. Such imperfect communication scenarios arise in the practical deployment of FL in emerging communication systems and protocols. The analysis developed in this paper demonstrates, for the first time, that there is an asymmetry in the detrimental effects of uplink and downlink communications in FL. In particular, the adverse effect of the downlink noise is more severe on the convergence of FL algorithms. Using this insight, we propose improved Signal-to-Noise (SNR) control strategies that, discarding the negligible higher-order terms, lead to a similar convergence rate for FL as in the case of a perfect, noise-free communication channel while incurring significantly less power resources compared to existing solutions. In particular, we establish that to maintain the $O(\frac{1}{\sqrt{K}})$ rate of convergence like in the case of noise-free FL, we need to scale down the uplink and downlink noise by $\Omega({\sqrt{k}})$ and $\Omega({k})$ respectively, where $k$ denotes the communication round, $k=1,\dots, K$. Our theoretical result is further characterized by two major benefits: firstly, it does not assume the somewhat unrealistic assumption of bounded client dissimilarity, and secondly, it only requires smooth non-convex loss functions, a function class better suited for modern machine learning and deep learning models. We also perform extensive empirical analysis to verify the validity of our theoretical findings.
Bayesian inference for neural networks, or Bayesian deep learning, has the potential to provide well-calibrated predictions with quantified uncertainty and robustness. However, the main hurdle for Bayesian deep learning is its computational complexity due to the high dimensionality of the parameter space. In this work, we propose a novel scheme that addresses this limitation by constructing a low-dimensional subspace of the neural network parameters-referred to as an active subspace-by identifying the parameter directions that have the most significant influence on the output of the neural network. We demonstrate that the significantly reduced active subspace enables effective and scalable Bayesian inference via either Monte Carlo (MC) sampling methods, otherwise computationally intractable, or variational inference. Empirically, our approach provides reliable predictions with robust uncertainty estimates for various regression tasks.
The aim of latent variable disentanglement is to infer the multiple informative latent representations that lie behind a data generation process and is a key factor in controllable data generation. In this paper, we propose a deep neural network-based self-supervised learning method to infer the disentangled rhythmic and harmonic representations behind music audio generation. We train a variational autoencoder that generates an audio mel-spectrogram from two latent features representing the rhythmic and harmonic content. In the training phase, the variational autoencoder is trained to reconstruct the input mel-spectrogram given its pitch-shifted version. At each forward computation in the training phase, a vector rotation operation is applied to one of the latent features, assuming that the dimensions of the feature vectors are related to pitch intervals. Therefore, in the trained variational autoencoder, the rotated latent feature represents the pitch-related information of the mel-spectrogram, and the unrotated latent feature represents the pitch-invariant information, i.e., the rhythmic content. The proposed method was evaluated using a predictor-based disentanglement metric on the learned features. Furthermore, we demonstrate its application to the automatic generation of music remixes.
We consider the problem of learning observation models for robot state estimation with incremental non-differentiable optimizers in the loop. Convergence to the correct belief over the robot state is heavily dependent on a proper tuning of observation models which serve as input to the optimizer. We propose a gradient-based learning method which converges much quicker to model estimates that lead to solutions of much better quality compared to an existing state-of-the-art method as measured by the tracking accuracy over unseen robot test trajectories.
We investigate the complexity of several manipulation and control problems under numerous prevalent approval-based multiwinner voting rules. Particularly, the rules we study include approval voting (AV), satisfaction approval voting (SAV), net-satisfaction approval voting (NSAV), proportional approval voting (PAV), approval-based Chamberlin-Courant voting (ABCCV), minimax approval voting (MAV), etc. We show that these rules generally resist the strategic types scrutinized in the paper, with only a few exceptions. In addition, we also obtain many fixed-parameter tractability results for these problems with respect to several natural parameters, and derive polynomial-time algorithms for certain special cases.
The quantum alternating operator ansatz (QAOA) is a heuristic hybrid quantum-classical algorithm for finding high-quality approximate solutions to combinatorial optimization problems, such as Maximum Satisfiability. While QAOA is well-studied, theoretical results as to its runtime or approximation ratio guarantees are still relatively sparse. We provide some of the first lower bounds for the number of rounds (the dominant component of QAOA runtimes) required for QAOA. For our main result, (i) we leverage a connection between quantum annealing times and the angles of QAOA to derive a lower bound on the number of rounds of QAOA with respect to the guaranteed approximation ratio. We apply and calculate this bound with Grover-style mixing unitaries and (ii) show that this type of QAOA requires at least a polynomial number of rounds to guarantee any constant approximation ratios for most problems. We also (iii) show that the bound depends only on the statistical values of the objective functions, and when the problem can be modeled as a $k$-local Hamiltonian, can be easily estimated from the coefficients of the Hamiltonians. For the conventional transverse field mixer, (iv) our framework gives a trivial lower bound to all bounded occurrence local cost problems and all strictly $k$-local cost Hamiltonians matching known results that constant approximation ratio is obtainable with constant round QAOA for a few optimization problems from these classes. Using our novel proof framework, (v) we recover the Grover lower bound for unstructured search and -- with small modification -- show that our bound applies to any QAOA-style search protocol that starts in the ground state of the mixing unitaries.
In the past decade, the deployment of deep learning (Artificial Intelligence (AI)) methods has become pervasive across a spectrum of real-world applications, often in safety-critical contexts. This comprehensive research article rigorously investigates the ethical dimensions intricately linked to the rapid evolution of AI technologies, with a particular focus on the healthcare domain. Delving deeply, it explores a multitude of facets including transparency, adept data management, human oversight, educational imperatives, and international collaboration within the realm of AI advancement. Central to this article is the proposition of a conscientious AI framework, meticulously crafted to accentuate values of transparency, equity, answerability, and a human-centric orientation. The second contribution of the article is the in-depth and thorough discussion of the limitations inherent to AI systems. It astutely identifies potential biases and the intricate challenges of navigating multifaceted contexts. Lastly, the article unequivocally accentuates the pressing need for globally standardized AI ethics principles and frameworks. Simultaneously, it aptly illustrates the adaptability of the ethical framework proposed herein, positioned skillfully to surmount emergent challenges.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.