To capture and simulate geometric surface evolutions, one effective approach is based on the phase field methods. Among them, it is important to design and analyze numerical approximations whose error bound depends on the inverse of the diffuse interface thickness (denoted by $\frac 1\epsilon$) polynomially. However, it has been a long-standing problem whether such numerical error bound exists for stochastic phase field equations. In this paper, we utilize the regularization effect of noise to show that near sharp interface limit, there always exists the weak error bound of numerical approximations, which depends on $\frac 1\epsilon$ at most polynomially. To illustrate our strategy, we propose a polynomial taming fully discrete scheme and present novel numerical error bounds under various metrics. Our method of proof could be also extended to a number of other fully numerical approximations for semilinear stochastic partial differential equations (SPDEs).
In this paper we establish limit theorems for power variations of stochastic processes controlled by fractional Brownian motions with Hurst parameter $H\leq 1/2$. We show that the power variations of such processes can be decomposed into the mix of several weighted random sums plus some remainder terms, and the convergences of power variations are dominated by different combinations of those weighted sums depending on whether $H<1/4$, $H=1/4$, or $H>1/4$. We show that when $H\geq 1/4$ the centered power variation converges stably at the rate $n^{-1/2}$, and when $H<1/4$ it converges in probability at the rate $n^{-2H}$. We determine the limit of the mixed weighted sum based on a rough path approach developed in \cite{LT20}.
Multiagent systems aim to accomplish highly complex learning tasks through decentralised consensus seeking dynamics and their use has garnered a great deal of attention in the signal processing and computational intelligence societies. This article examines the behaviour of multiagent networked systems with nonlinear filtering/learning dynamics. To this end, a general formulation for the actions of an agent in multiagent networked systems is presented and conditions for achieving a cohesive learning behaviour is given. Importantly, application of the so derived framework in distributed and federated learning scenarios are presented.
A novel overlapping domain decomposition splitting algorithm based on a Crank-Nisolson method is developed for the stochastic nonlinear Schroedinger equation driven by a multiplicative noise with non-periodic boundary conditions. The proposed algorithm can significantly reduce the computational cost while maintaining the similar conservation laws. Numerical experiments are dedicated to illustrating the capability of the algorithm for different spatial dimensions, as well as the various initial conditions. In particular, we compare the performance of the overlapping domain decomposition splitting algorithm with the stochastic multi-symplectic method in [S. Jiang, L. Wang and J. Hong, Commun. Comput. Phys., 2013] and the finite difference splitting scheme in [J. Cui, J. Hong, Z. Liu and W. Zhou, J. Differ. Equ., 2019]. We observe that our proposed algorithm has excellent computational efficiency and is highly competitive. It provides a useful tool for solving stochastic partial differential equations.
In this paper, we are concerned with symmetric integrators for the nonlinear relativistic Klein--Gordon (NRKG) equation with a dimensionless parameter $0<\varepsilon\ll 1$, which is inversely proportional to the speed of light. The highly oscillatory property in time of this model corresponds to the parameter $\varepsilon$ and the equation has strong nonlinearity when $\eps$ is small. There two aspects bring significantly numerical burdens in designing numerical methods. We propose and analyze a novel class of symmetric integrators which is based on some formulation approaches to the problem, Fourier pseudo-spectral method and exponential integrators. Two practical integrators up to order four are constructed by using the proposed symmetric property and stiff order conditions of implicit exponential integrators. The convergence of the obtained integrators is rigorously studied, and it is shown that the accuracy in time is improved to be $\mathcal{O}(\varepsilon^{3} \hh^2)$ and $\mathcal{O}(\varepsilon^{4} \hh^4)$ for the time stepsize $\hh$. The near energy conservation over long times is established for the multi-stage integrators by using modulated Fourier expansions. These theoretical results are achievable even if large stepsizes are utilized in the schemes. Numerical results on a NRKG equation show that the proposed integrators have improved uniform error bounds, excellent long time energy conservation and competitive efficiency.
An efficient method of computing power expansions of algebraic functions is the method of Kung and Traub and is based on exact arithmetic. This paper shows a numeric approach is both feasible and accurate while also introducing a performance improvement to Kung and Traub's method based on the ramification extent of the expansions. A new method is then described for computing radii of convergence using a series comparison test. Series accuracies are then fitted to a simple log-linear function in their domain of convergence and found to have low variance. Algebraic functions up to degree 50 were analyzed and timed. A consequence of this work provided a simple method of computing the Riemann surface genus and was used as a cycle check-sum. Mathematica ver. 13.2 was used to acquire and analyze the data on a 4.0 GHz quad-core desktop computer.
We present a family of minimal modal logics (namely, modal logics based on minimal propositional logic) corresponding each to a different classical modal logic. The minimal modal logics are defined based on their classical counterparts in two distinct ways: (1) via embedding into fusions of classical modal logics through a natural extension of the G\"odel-Johansson translation of minimal logic into modal logic S4; (2) via extension to modal logics of the multi- vs. single-succedent correspondence of sequent calculi for classical and minimal logic. We show that, despite being mutually independent, the two methods turn out to be equivalent for a wide class of modal systems. Moreover, we compare the resulting minimal version of K with the constructive modal logic CK studied in the literature, displaying tight relations among the two systems. Based on these relations, we also define a constructive correspondent for each minimal system, thus obtaining a family of constructive modal logics which includes CK as well as other constructive modal logics studied in the literature.
We study matrix sensing, which is the problem of reconstructing a low-rank matrix from a few linear measurements. It can be formulated as an overparameterized regression problem, which can be solved by factorized gradient descent when starting from a small random initialization. Linear neural networks, and in particular matrix sensing by factorized gradient descent, serve as prototypical models of non-convex problems in modern machine learning, where complex phenomena can be disentangled and studied in detail. Much research has been devoted to studying special cases of asymmetric matrix sensing, such as asymmetric matrix factorization and symmetric positive semi-definite matrix sensing. Our key contribution is introducing a continuous differential equation that we call the $\textit{perturbed gradient flow}$. We prove that the perturbed gradient flow converges quickly to the true target matrix whenever the perturbation is sufficiently bounded. The dynamics of gradient descent for matrix sensing can be reduced to this formulation, yielding a novel proof of asymmetric matrix sensing with factorized gradient descent. Compared to directly analyzing the dynamics of gradient descent, the continuous formulation allows bounding key quantities by considering their derivatives, often simplifying the proofs. We believe the general proof technique may prove useful in other settings as well.
We aim to establish Bowen's equations for upper capacity invariance pressure and Pesin-Pitskel invariance pressure of discrete-time control systems. We first introduce a new invariance pressure called induced invariance pressure on partitions that specializes the upper capacity invariance pressure on partitions, and then show that the two types of invariance pressures are related by a Bowen's equation. Besides, to establish Bowen's equation for Pesin-Pitskel invariance pressure on partitions we also introduce a new notion called BS invariance dimension on subsets. Moreover, a variational principle for BS invariance dimension on subsets is established.
In this paper, efficient alternating direction implicit (ADI) schemes are proposed to solve three-dimensional heat equations with irregular boundaries and interfaces. Starting from the well-known Douglas-Gunn ADI scheme, a modified ADI scheme is constructed to mitigate the issue of accuracy loss in solving problems with time-dependent boundary conditions. The unconditional stability of the new ADI scheme is also rigorously proven with the Fourier analysis. Then, by combining the ADI schemes with a 1D kernel-free boundary integral (KFBI) method, KFBI-ADI schemes are developed to solve the heat equation with irregular boundaries. In 1D sub-problems of the KFBI-ADI schemes, the KFBI discretization takes advantage of the Cartesian grid and preserves the structure of the coefficient matrix so that the fast Thomas algorithm can be applied to solve the linear system efficiently. Second-order accuracy and unconditional stability of the KFBI-ADI schemes are verified through several numerical tests for both the heat equation and a reaction-diffusion equation. For the Stefan problem, which is a free boundary problem of the heat equation, a level set method is incorporated into the ADI method to capture the time-dependent interface. Numerical examples for simulating 3D dendritic solidification phenomenons are also presented.
In this paper, two novel classes of implicit exponential Runge-Kutta (ERK) methods are studied for solving highly oscillatory systems. Firstly, we analyze the symplectic conditions for two kinds of exponential integrators and obtain the symplectic method. In order to effectively solve highly oscillatory problems, we try to design the highly accurate implicit ERK integrators. By comparing the Taylor series expansion of numerical solution with exact solution, it can be verified that the order conditions of two new kinds of exponential methods are identical to classical Runge-Kutta (RK) methods, which implies that using the coefficients of RK methods, some highly accurate numerical methods are directly formulated. Furthermore, we also investigate the linear stability properties for these exponential methods. Finally, numerical results not only display the long time energy preservation of the symplectic method, but also present the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.