亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Compositional Zero-Shot Learning (CZSL) aims to transfer knowledge from seen state-object pairs to novel unseen pairs. In this process, visual bias caused by the diverse interrelationship of state-object combinations blurs their visual features, hindering the learning of distinguishable class prototypes. Prevailing methods concentrate on disentangling states and objects directly from visual features, disregarding potential enhancements that could arise from a data viewpoint. Experimentally, we unveil the results caused by the above problem closely approximate the long-tailed distribution. As a solution, we transform CZSL into a proximate class imbalance problem. We mathematically deduce the role of class prior within the long-tailed distribution in CZSL. Building upon this insight, we incorporate visual bias caused by compositions into the classifier's training and inference by estimating it as a proximate class prior. This enhancement encourages the classifier to acquire more discernible class prototypes for each composition, thereby achieving more balanced predictions. Experimental results demonstrate that our approach elevates the model's performance to the state-of-the-art level, without introducing additional parameters. Our code is available at \url{//github.com/LanchJL/ProLT-CZSL}.

相關內容

The advancement of Large Vision-Language Models (LVLMs) has increasingly highlighted the critical issue of their tendency to hallucinate non-existing objects in the images. To address this issue, previous works focused on using specially curated datasets or powerful LLMs (e.g., GPT-3.5) to rectify the outputs of LVLMs. However, these approaches require either expensive training/fine-tuning or API access to advanced LLMs to correct the model's output post-generation. In this paper, we tackle this challenge by introducing a framework called Mitigating hallucinAtion via classifieR-Free guIdaNcE (MARINE), which is both training-free and API-free, and can effectively and efficiently reduce object hallucinations during the generation process. Specifically, MARINE enriches the visual context of LVLMs by integrating existing open-source vision models, and employs classifier-free guidance to incorporate the additional object grounding features to improve the precision of LVLMs' generations. Through comprehensive evaluations across $6$ popular LVLMs with diverse evaluation metrics, we demonstrate the effectiveness of MARINE, which even outperforms existing fine-tuning-based methods. Remarkably, it not only reduces hallucinations but also improves the detailedness of LVLMs' generations, as assessed by GPT-4V.

Identifying causal structure is central to many fields ranging from strategic decision-making to biology and economics. In this work, we propose CD-UCT, a model-based reinforcement learning method for causal discovery based on tree search that builds directed acyclic graphs incrementally. We also formalize and prove the correctness of an efficient algorithm for excluding edges that would introduce cycles, which enables deeper discrete search and sampling in DAG space. The proposed method can be applied broadly to causal Bayesian networks with both discrete and continuous random variables. We conduct a comprehensive evaluation on synthetic and real-world datasets, showing that CD-UCT substantially outperforms the state-of-the-art model-free reinforcement learning technique and greedy search, constituting a promising advancement for combinatorial methods.

The knowledge concept recommendation in Massive Open Online Courses (MOOCs) is a significant issue that has garnered widespread attention. Existing methods primarily rely on the explicit relations between users and knowledge concepts on the MOOC platforms for recommendation. However, there are numerous implicit relations (e.g., shared interests or same knowledge levels between users) generated within the users' learning activities on the MOOC platforms. Existing methods fail to consider these implicit relations, and these relations themselves are difficult to learn and represent, causing poor performance in knowledge concept recommendation and an inability to meet users' personalized needs. To address this issue, we propose a novel framework based on contrastive learning, which can represent and balance the explicit and implicit relations for knowledge concept recommendation in MOOCs (CL-KCRec). Specifically, we first construct a MOOCs heterogeneous information network (HIN) by modeling the data from the MOOC platforms. Then, we utilize a relation-updated graph convolutional network and stacked multi-channel graph neural network to represent the explicit and implicit relations in the HIN, respectively. Considering that the quantity of explicit relations is relatively fewer compared to implicit relations in MOOCs, we propose a contrastive learning with prototypical graph to enhance the representations of both relations to capture their fruitful inherent relational knowledge, which can guide the propagation of students' preferences within the HIN. Based on these enhanced representations, to ensure the balanced contribution of both towards the final recommendation, we propose a dual-head attention mechanism for balanced fusion. Experimental results demonstrate that CL-KCRec outperforms several state-of-the-art baselines on real-world datasets in terms of HR, NDCG and MRR.

Generative AI is changing the way that many disciplines are taught, including computer science. Researchers have shown that generative AI tools are capable of solving programming problems, writing extensive blocks of code, and explaining complex code in simple terms. Particular promise has been shown in using generative AI to enhance programming error messages. Both students and instructors have complained for decades that these messages are often cryptic and difficult to understand. Yet recent work has shown that students make fewer repeated errors when enhanced via GPT-4. We extend this work by implementing feedback from ChatGPT for all programs submitted to our automated assessment tool, Athene, providing help for compiler, run-time, and logic errors. Our results indicate that adding generative AI to an automated assessment tool does not necessarily make it better and that design of the interface matters greatly to the usability of the feedback that GPT-4 provided.

We propose a novel method for privacy-preserving deep neural networks (DNNs) with the Vision Transformer (ViT). The method allows us not only to train models and test with visually protected images but to also avoid the performance degradation caused from the use of encrypted images, whereas conventional methods cannot avoid the influence of image encryption. A domain adaptation method is used to efficiently fine-tune ViT with encrypted images. In experiments, the method is demonstrated to outperform conventional methods in an image classification task on the CIFAR-10 and ImageNet datasets in terms of classification accuracy.

Automated Market Makers (AMMs) are an integral component of the decentralized finance (DeFi) ecosystem, as they allow users to exchange crypto-assets without the need for trusted authorities or external price oracles. Although these protocols are based on relatively simple mechanisms, e.g., to algorithmically determine the exchange rate between crypto-assets, they give rise to complex economic behaviours. This complexity is witnessed by the proliferation of models that study their structural and economic properties. Currently, most of theoretical results obtained on these models are supported by pen-and-paper proofs. This work proposes a formalization of constant-product AMMs in the Lean 4 Theorem Prover. To demonstrate the utility of our model, we provide mechanized proofs of key economic properties like arbitrage, that at the best of our knowledge have only been proved by pen-and-paper before.

Large Language Models (LLMs) have shown remarkable promise in their ability to interact proficiently with humans. Subsequently, their potential use as artificial confederates and surrogates in sociological experiments involving conversation is an exciting prospect. But how viable is this idea? This paper endeavors to test the limits of current-day LLMs with a pre-registered study integrating real people with LLM agents acting as people. The study focuses on debate-based opinion consensus formation in three environments: humans only, agents and humans, and agents only. Our goal is to understand how LLM agents influence humans, and how capable they are in debating like humans. We find that LLMs can blend in and facilitate human productivity but are less convincing in debate, with their behavior ultimately deviating from human's. We elucidate these primary failings and anticipate that LLMs must evolve further before being viable debaters.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

北京阿比特科技有限公司