亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Convolutional neural networks excel in histopathological image classification, yet their pixel-level focus hampers explainability. Conversely, emerging graph convolutional networks spotlight cell-level features and medical implications. However, limited by their shallowness and suboptimal use of high-dimensional pixel data, GCNs underperform in multi-class histopathological image classification. To make full use of pixel-level and cell-level features dynamically, we propose an asymmetric co-training framework combining a deep graph convolutional network and a convolutional neural network for multi-class histopathological image classification. To improve the explainability of the entire framework by embedding morphological and topological distribution of cells, we build a 14-layer deep graph convolutional network to handle cell graph data. For the further utilization and dynamic interactions between pixel-level and cell-level information, we also design a co-training strategy to integrate the two asymmetric branches. Notably, we collect a private clinically acquired dataset termed LUAD7C, including seven subtypes of lung adenocarcinoma, which is rare and more challenging. We evaluated our approach on the private LUAD7C and public colorectal cancer datasets, showcasing its superior performance, explainability, and generalizability in multi-class histopathological image classification.

相關內容

圖像分類,顧名思義,是一個輸入圖像,輸出對該圖像內容分類的描述的問題。它是計算機視覺的核心,實際應用廣泛。

The small amount of training data for many state-of-the-art deep learning-based Face Recognition (FR) systems causes a marked deterioration in their performance. Although a considerable amount of research has addressed this issue by inventing new data augmentation techniques, using either input space transformations or Generative Adversarial Networks (GAN) for feature space augmentations, these techniques have yet to satisfy expectations. In this paper, we propose an approach named the Face Representation Augmentation (FRA) for augmenting face datasets. To the best of our knowledge, FRA is the first method that shifts its focus towards manipulating the face embeddings generated by any face representation learning algorithm to create new embeddings representing the same identity and facial emotion but with an altered posture. Extensive experiments conducted in this study convince of the efficacy of our methodology and its power to provide noiseless, completely new facial representations to improve the training procedure of any FR algorithm. Therefore, FRA can help the recent state-of-the-art FR methods by providing more data for training FR systems. The proposed method, using experiments conducted on the Karolinska Directed Emotional Faces (KDEF) dataset, improves the identity classification accuracies by 9.52 %, 10.04 %, and 16.60 %, in comparison with the base models of MagFace, ArcFace, and CosFace, respectively.

Weakly supervised semantic segmentation (WSSS) aims to bypass the need for laborious pixel-level annotation by using only image-level annotation. Most existing methods rely on Class Activation Maps (CAM) to derive pixel-level pseudo-labels and use them to train a fully supervised semantic segmentation model. Although these pseudo-labels are class-aware, indicating the coarse regions for particular classes, they are not object-aware and fail to delineate accurate object boundaries. To address this, we introduce a simple yet effective method harnessing the Segment Anything Model (SAM), a class-agnostic foundation model capable of producing fine-grained instance masks of objects, parts, and subparts. We use CAM pseudo-labels as cues to select and combine SAM masks, resulting in high-quality pseudo-labels that are both class-aware and object-aware. Our approach is highly versatile and can be easily integrated into existing WSSS methods without any modification. Despite its simplicity, our approach shows consistent gain over the state-of-the-art WSSS methods on both PASCAL VOC and MS-COCO datasets.

Annotating remote sensing images (RSIs) presents a notable challenge due to its labor-intensive nature. Semi-supervised object detection (SSOD) methods tackle this issue by generating pseudo-labels for the unlabeled data, assuming that all classes found in the unlabeled dataset are also represented in the labeled data. However, real-world situations introduce the possibility of out-of-distribution (OOD) samples being mixed with in-distribution (ID) samples within the unlabeled dataset. In this paper, we delve into techniques for conducting SSOD directly on uncurated unlabeled data, which is termed Open-Set Semi-Supervised Object Detection (OSSOD). Our approach commences by employing labeled in-distribution data to dynamically construct a class-wise feature bank (CFB) that captures features specific to each class. Subsequently, we compare the features of predicted object bounding boxes with the corresponding entries in the CFB to calculate OOD scores. We design an adaptive threshold based on the statistical properties of the CFB, allowing us to filter out OOD samples effectively. The effectiveness of our proposed method is substantiated through extensive experiments on two widely used remote sensing object detection datasets: DIOR and DOTA. These experiments showcase the superior performance and efficacy of our approach for OSSOD on RSIs.

Transformer models, despite their impressive performance, often face practical limitations due to their high computational requirements. At the same time, previous studies have revealed significant activation sparsity in these models, indicating the presence of redundant computations. In this paper, we propose Dynamic Sparsified Transformer Inference (DSTI), a method that radically reduces the inference cost of Transformer models by enforcing activation sparsity and subsequently transforming a dense model into its sparse Mixture of Experts (MoE) version. We demonstrate that it is possible to train small gating networks that successfully predict the relative contribution of each expert during inference. Furthermore, we introduce a mechanism that dynamically determines the number of executed experts individually for each token. DSTI can be applied to any Transformer-based architecture and has negligible impact on the accuracy. For the BERT-base classification model, we reduce inference cost by almost 60%.

This paper proposes a novel hue-like angular parameter to model the structure of deep convolutional neural network (CNN) activation space, referred to as the {\em activation hue}, for the purpose of regularizing models for more effective learning. The activation hue generalizes the notion of color hue angle in standard 3-channel RGB intensity space to $N$-channel activation space. A series of observations based on nearest neighbor indexing of activation vectors with pre-trained networks indicate that class-informative activations are concentrated about an angle $\theta$ in both the $(x,y)$ image plane and in multi-channel activation space. A regularization term in the form of hue-like angular $\theta$ labels is proposed to complement standard one-hot loss. Training from scratch using combined one-hot + activation hue loss improves classification performance modestly for a wide variety of classification tasks, including ImageNet.

Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司