亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The minimum set cover (MSC) problem admits two classic algorithms: a greedy $\ln n$-approximation and a primal-dual $f$-approximation, where $n$ is the universe size and $f$ is the maximum frequency of an element. Both algorithms are simple and efficient, and remarkably -- one cannot improve these approximations under hardness results by more than a factor of $(1+\epsilon)$, for any constant $\epsilon > 0$. In their pioneering work, Gupta et al. [STOC'17] showed that the greedy algorithm can be dynamized to achieve $O(\log n)$-approximation with update time $O(f \log n)$. Building on this result, Hjuler et al. [STACS'18] dynamized the greedy minimum dominating set (MDS) algorithm, achieving a similar approximation with update time $O(\Delta \log n)$ (the analog of $O(f \log n)$), albeit for unweighted instances. The approximations of both algorithms, which are the state-of-the-art, exceed the static $\ln n$-approximation by a rather large constant factor. In sharp contrast, the current best dynamic primal-dual MSC algorithms achieve fast update times together with an approximation that exceeds the static $f$-approximation by a factor of (at most) $1+\epsilon$, for any $\epsilon > 0$. This paper aims to bridge the gap between the best approximation factor of the dynamic greedy MSC and MDS algorithms and the static $\ln n$ bound. We present dynamic algorithms for weighted greedy MSC and MDS with approximation $(1+\epsilon)\ln n$ for any $\epsilon > 0$, while achieving the same update time (ignoring dependencies on $\epsilon$) of the best previous algorithms (with approximation significantly larger than $\ln n$). Moreover, [...]

相關內容

In self-supervised contrastive learning, a widely-adopted objective function is InfoNCE, which uses the heuristic cosine similarity for the representation comparison, and is closely related to maximizing the Kullback-Leibler (KL)-based mutual information. In this paper, we aim at answering two intriguing questions: (1) Can we go beyond the KL-based objective? (2) Besides the popular cosine similarity, can we design a better similarity function? We provide answers to both questions by generalizing the KL-based mutual information to the $f$-Mutual Information in Contrastive Learning ($f$-MICL) using the $f$-divergences. To answer the first question, we provide a wide range of $f$-MICL objectives which share the nice properties of InfoNCE (e.g., alignment and uniformity), and meanwhile result in similar or even superior performance. For the second question, assuming that the joint feature distribution is proportional to the Gaussian kernel, we derive an $f$-Gaussian similarity with better interpretability and empirical performance. Finally, we identify close relationships between the $f$-MICL objective and several popular InfoNCE-based objectives. Using benchmark tasks from both vision and natural language, we empirically evaluate $f$-MICL with different $f$-divergences on various architectures (SimCLR, MoCo, and MoCo v3) and datasets. We observe that $f$-MICL generally outperforms the benchmarks and the best-performing $f$-divergence is task and dataset dependent.

We show that every $3$-connected $K_{2,\ell}$-minor free graph with minimum degree at least $4$ has maximum degree at most $7\ell$. As a consequence, we show that every 3-connected $K_{2,\ell}$-minor free graph with minimum degree at least $5$ and no twins of degree $5$ has bounded size. Our proofs use Steiner trees and nested cuts; in particular, they do not rely on Ding's characterization of $K_{2,\ell}$-minor free graphs.

Algorithms for causal discovery have recently undergone rapid advances and increasingly draw on flexible nonparametric methods to process complex data. With these advances comes a need for adequate empirical validation of the causal relationships learned by different algorithms. However, for most real data sources true causal relations remain unknown. This issue is further compounded by privacy concerns surrounding the release of suitable high-quality data. To help address these challenges, we gather a complex dataset comprising measurements from an assembly line in a manufacturing context. This line consists of numerous physical processes for which we are able to provide ground truth causal relationships on the basis of a detailed study of the underlying physics. We use the assembly line data and associated ground truth information to build a system for generation of semisynthetic manufacturing data that supports benchmarking of causal discovery methods. To accomplish this, we employ distributional random forests in order to flexibly estimate and represent conditional distributions that may be combined into joint distributions that strictly adhere to a causal model over the observed variables. The estimated conditionals and tools for data generation are made available in our Python library $\texttt{causalAssembly}$. Using the library, we showcase how to benchmark several well-known causal discovery algorithms.

For the numerical solution of Dirichlet-type boundary value problems associated to nonlinear fractional differential equations of order $\alpha \in (1,2)$ that use Caputo derivatives, we suggest to employ shooting methods. In particular, we demonstrate that the so-called proportional secting technique for selecting the required initial values leads to numerical schemes that converge to high accuracy in a very small number of shooting iterations, and we provide an explanation of the analytical background for this favourable numerical behaviour.

The classic string indexing problem is to preprocess a string $S$ into a compact data structure that supports efficient subsequent pattern matching queries, that is, given a pattern string $P$, report all occurrences of $P$ within $S$. In this paper, we study a basic and natural extension of string indexing called the string indexing for top-$k$ close consecutive occurrences problem (SITCCO). Here, a consecutive occurrence is a pair $(i,j)$, $i < j$, such that $P$ occurs at positions $i$ and $j$ in $S$ and there is no occurrence of $P$ between $i$ and $j$, and their distance is defined as $j-i$. Given a pattern $P$ and a parameter $k$, the goal is to report the top-$k$ consecutive occurrences of $P$ in $S$ of minimal distance. The challenge is to compactly represent $S$ while supporting queries in time close to the length of $P$ and $k$. We give three time-space trade-offs for the problem. Let $n$ be the length of $S$, $m$ the length of $P$, and $\epsilon\in(0,1]$. Our first result achieves $O(n\log n)$ space and optimal query time of $O(m+k)$. Our second and third results achieve linear space and query times either $O(m+k^{1+\epsilon})$ or $O(m + k \log^{1+\epsilon} n)$. Along the way, we develop several techniques of independent interest, including a new translation of the problem into a line segment intersection problem and a new recursive clustering technique for trees.

Two Latin squares of order $n$ are $r$-orthogonal if, when superimposed, there are exactly $r$ distinct ordered pairs. The spectrum of all values of $r$ for Latin squares of order $n$ is known. A Latin square $A$ of order $n$ is $r$-self-orthogonal if $A$ and its transpose are $r$-orthogonal. The spectrum of all values of $r$ is known for all orders $n\ne 14$. We develop randomized algorithms for computing pairs of $r$-orthogonal Latin squares of order $n$ and algorithms for computing $r$-self-orthogonal Latin squares of order $n$.

The $\lambda$$\Pi$-calculus modulo theory is an extension of simply typed $\lambda$-calculus with dependent types and user-defined rewrite rules. We show that it is possible to replace the rewrite rules of a theory of the $\lambda$$\Pi$-calculus modulo theory by equational axioms, when this theory features the notions of proposition and proof, while maintaining the same expressiveness. To do so, we introduce in the target theory a heterogeneous equality, and we build a translation that replaces each use of the conversion rule by the insertion of a transport. At the end, the theory with rewrite rules is a conservative extension of the theory with axioms.

We consider the paradigm of unsupervised anomaly detection, which involves the identification of anomalies within a dataset in the absence of labeled examples. Though distance-based methods are top-performing for unsupervised anomaly detection, they suffer heavily from the sensitivity to the choice of the number of the nearest neighbors. In this paper, we propose a new distance-based algorithm called bagged regularized $k$-distances for anomaly detection (BRDAD) converting the unsupervised anomaly detection problem into a convex optimization problem. Our BRDAD algorithm selects the weights by minimizing the surrogate risk, i.e., the finite sample bound of the empirical risk of the bagged weighted $k$-distances for density estimation (BWDDE). This approach enables us to successfully address the sensitivity challenge of the hyperparameter choice in distance-based algorithms. Moreover, when dealing with large-scale datasets, the efficiency issues can be addressed by the incorporated bagging technique in our BRDAD algorithm. On the theoretical side, we establish fast convergence rates of the AUC regret of our algorithm and demonstrate that the bagging technique significantly reduces the computational complexity. On the practical side, we conduct numerical experiments on anomaly detection benchmarks to illustrate the insensitivity of parameter selection of our algorithm compared with other state-of-the-art distance-based methods. Moreover, promising improvements are brought by applying the bagging technique in our algorithm on real-world datasets.

In this paper we explore the challenges and strategies for enhancing the robustness of $k$-means clustering algorithms against adversarial manipulations. We evaluate the vulnerability of clustering algorithms to adversarial attacks, emphasising the associated security risks. Our study investigates the impact of incremental attack strength on training, introduces the concept of transferability between supervised and unsupervised models, and highlights the sensitivity of unsupervised models to sample distributions. We additionally introduce and evaluate an adversarial training method that improves testing performance in adversarial scenarios, and we highlight the importance of various parameters in the proposed training method, such as continuous learning, centroid initialisation, and adversarial step-count.

When estimating the parameters in functional ARMA, GARCH and invertible, linear processes, covariance and lagged cross-covariance operators of processes in Cartesian product spaces appear. Such operators have been consistenly estimated in recent years, either less generally or under a strong condition. This article extends the existing literature by deriving explicit upper bounds for estimation errors for lagged covariance and lagged cross-covariance operators of processes in general Cartesian product Hilbert spaces, based on the mild weak dependence condition $L^p$-$m$-approximability. The upper bounds are stated for each lag, Cartesian power(s) and sample size, where the two processes in the context of lagged cross-covariance operators can take values in different spaces. General consequences of our results are also mentioned.

北京阿比特科技有限公司