亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Nondeterministic choice is a useful program construct that provides a way to describe the behaviour of a program without specifying the details of possible implementations. It supports the stepwise refinement of programs, a method that has proven useful in software development. Nondeterminism has also been introduced in quantum programming, and the termination of nondeterministic quantum programs has been extensively analysed. In this paper, we go beyond termination analysis to investigate the verification of nondeterministic quantum programs where properties are given by sets of hermitian operators on the associated Hilbert space. Hoare-type logic systems for partial and total correctness are proposed, which turn out to be both sound and relatively complete with respect to their corresponding semantic correctness. To show the utility of these proof systems, we analyse some quantum algorithms, such as quantum error correction scheme, the Deutsch algorithm, and a nondeterministic quantum walk. Finally, a proof assistant prototype is implemented to aid in the automated reasoning of nondeterministic quantum programs.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

The successive cancellation list decoder (SCL) is an efficient decoder for classical polar codes with low decoding error, approximating the maximum likelihood decoder (MLD) for small list sizes. Here we adapt the SCL to the task of decoding quantum polar codes and show that it inherits the high performance and low complexity of the classical case, and can approximate the quantum MLD for certain channels. We apply SCL decoding to a novel version of quantum polar codes based on the polarization weight (PW) method, which entirely avoids the need for small amounts of entanglement assistance apparent in previous quantum polar code constructions. When used to find the precise error pattern, the quantum SCL decoder (SCL-E) shows competitive performance with surface codes of similar size and low-density parity check codes of similar size and rate. The SCL decoder may instead be used to approximate the probability of each equivalence class of errors, and then choose the most likely class. We benchmark this class-oriented decoder (SCL-C) against the SCL-E decoder and find a noticeable improvement in the logical error rate. This improvement stems from the fact that the contributions from just the low-weight errors give a reasonable approximation to the error class probabilities. Both SCL-E and SCL-C maintain the complexity O(LN logN) of SCL for code size N and list size L. We also show that the list decoder can be used to gain insight into the weight distribution of the codes and how this impacts the effect of degenerate errors.

Extracting classical information from quantum systems is an essential step of many quantum algorithms. However, this information could be corrupted as the systems are prone to quantum noises, and its distortion under quantum dynamics has not been adequately investigated. In this work, we introduce a systematic framework to study how well we can retrieve information from noisy quantum states. Given a noisy quantum channel, we fully characterize the range of recoverable classical information. This condition allows a natural measure quantifying the information recoverability of a channel. Moreover, we resolve the minimum information retrieving cost, which, along with the corresponding optimal protocol, is efficiently computable by semidefinite programming. As applications, we establish the limits on the information retrieving cost for practical quantum noises and employ the corresponding protocols to mitigate errors in ground state energy estimation. Our work gives the first full characterization of information recoverability of noisy quantum states from the recoverable range to the recovering cost, revealing the ultimate limit of probabilistic error cancellation.

Entanglement is a quantum resource, in some ways analogous to randomness in classical computation. Inspired by recent work of Gheorghiu and Hoban, we define the notion of "pseudoentanglement'', a property exhibited by ensembles of efficiently constructible quantum states which are indistinguishable from quantum states with maximal entanglement. Our construction relies on the notion of quantum pseudorandom states -- first defined by Ji, Liu and Song -- which are efficiently constructible states indistinguishable from (maximally entangled) Haar-random states. Specifically, we give a construction of pseudoentangled states with entanglement entropy arbitrarily close to $\log n$ across every cut, a tight bound providing an exponential separation between computational vs information theoretic quantum pseudorandomness. We discuss applications of this result to Matrix Product State testing, entanglement distillation, and the complexity of the AdS/CFT correspondence. As compared with a previous version of this manuscript (arXiv:2211.00747v1) this version introduces a new pseudorandom state construction, has a simpler proof of correctness, and achieves a technically stronger result of low entanglement across all cuts simultaneously.

Free categorical constructions characterise quantum computing as the combination of two copies of a reversible classical model, glued by the complementarity equations of classical structures. This recipe effectively constructs a computationally universal quantum programming language from two copies of Pi, the internal language of rig groupoids. The construction consists of Hughes' arrows. Thus answer positively the question whether a computational effect exists that turns reversible classical computation into quantum computation: the quantum effect. Measurements can be added by layering a further effect on top. Our construction also enables some reasoning about quantum programs (with or without measurement) through a combination of classical reasoning and reasoning about complementarity.

The CONGEST and CONGEST-CLIQUE models have been carefully studied to represent situations where the communication bandwidth between processors in a network is severely limited. Messages of only $O(log(n))$ bits of information each may be sent between processors in each round. The quantum versions of these models allow the processors instead to communicate and compute with quantum bits under the same bandwidth limitations. This leads to the following natural research question: What problems can be solved more efficiently in these quantum models than in the classical ones? Building on existing work, we contribute to this question in two ways. Firstly, we present two algorithms in the Quantum CONGEST-CLIQUE model of distributed computation that succeed with high probability; one for producing an approximately optimal Steiner Tree, and one for producing an exact directed minimum spanning tree, each of which uses $\tilde{O}(n^{1/4})$ rounds of communication and $\tilde{O}(n^{9/4})$ messages, where $n$ is the number of nodes in the network. The algorithms thus achieve a lower asymptotic round and message complexity than any known algorithms in the classical CONGEST-CLIQUE model. At a high level, we achieve these results by combining classical algorithmic frameworks with quantum subroutines. An existing framework for using distributed version of Grover's search algorithm to accelerate triangle finding lies at the core of the asymptotic speedup. Secondly, we carefully characterize the constants and logarithmic factors involved in our algorithms as well as related algorithms, otherwise commonly obscured by $\tilde{O}$ notation. The analysis shows that some improvements are needed to render both our and existing related quantum and classical algorithms practical, as their asymptotic speedups only help for very large values of $n$.

In this paper, we present efficient quantum algorithms that are exponentially faster than classical algorithms for solving the quantum optimal control problem. This problem involves finding the control variable that maximizes a physical quantity at time $T$, where the system is governed by a time-dependent Schr\"odinger equation. This type of control problem also has an intricate relation with machine learning. Our algorithms are based on a time-dependent Hamiltonian simulation method and a fast gradient-estimation algorithm. We also provide a comprehensive error analysis to quantify the total error from various steps, such as the finite-dimensional representation of the control function, the discretization of the Schr\"odinger equation, the numerical quadrature, and optimization. Our quantum algorithms require fault-tolerant quantum computers.

In this paper, we consider waveform design for dualfunction radar-communication systems based on multiple-inputmultiple-out arrays. To achieve better Rician target detection performance, we use the relative entropy associated with the formulated detection problem as the design metric. We also impose a multiuser interference energy constraint on the waveforms to ensure the achievable sum-rate of the communications. Two algorithms are presented to tackle the nonlinear non-convex waveform design problem. In the first algorithm, we derive a quadratic function to minorize the objective function. To tackle the quadratically constrained quadratic programming problem at each iteration, a semidefinite relaxation approach followed by a rank-one decomposition procedure and an efficient alternating direction method of multipliers (ADMM) are proposed, respectively. In the second algorithm, we present a novel ADMM algorithm to tackle the optimization problem and employ an efficient minorization-maximization approach in the inner loop of the ADMM algorithm. Numerical results demonstrate the superiority of both algorithms. Moreover, the presented algorithms can be extended to synthesize peak-to-average-power ratio constrained waveforms, which allows the radio frequency amplifier to operate at an increased efficiency.

This research applies concepts from algorithmic probability to Boolean and quantum combinatorial logic circuits. A tutorial-style introduction to states and various notions of the complexity of states are presented. Thereafter, the probability of states in the circuit model of computation is defined. Classical and quantum gate sets are compared to select some characteristic sets. The reachability and expressibility in a space-time-bounded setting for these gate sets are enumerated and visualized. These results are studied in terms of computational resources, universality and quantum behavior. The article suggests how applications like geometric quantum machine learning, novel quantum algorithm synthesis and quantum artificial general intelligence can benefit by studying circuit probabilities.

We provide the first $\mathit{constant}$-$\mathit{round}$ construction of post-quantum non-malleable commitments under the minimal assumption that $\mathit{post}$-$\mathit{quantum}$ $\mathit{one}$-$\mathit{way}$ $\mathit{functions}$ exist. We achieve the standard notion of non-malleability with respect to commitments. Prior constructions required $\Omega(\log^*\lambda)$ rounds under the same assumption. We achieve our results through a new technique for constant-round non-malleable commitments which is easier to use in the post-quantum setting. The technique also yields an almost elementary proof of security for constant-round non-malleable commitments in the classical setting, which may be of independent interest. When combined with existing work, our results yield the first constant-round quantum-secure multiparty computation for both classical and quantum functionalities $\mathit{in}$ $\mathit{the}$ $\mathit{plain}$ $\mathit{model}$, under the $\mathit{polynomial}$ hardness of quantum fully-homomorphic encryption and quantum learning with errors.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司