亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present efficient quantum algorithms that are exponentially faster than classical algorithms for solving the quantum optimal control problem. This problem involves finding the control variable that maximizes a physical quantity at time $T$, where the system is governed by a time-dependent Schr\"odinger equation. This type of control problem also has an intricate relation with machine learning. Our algorithms are based on a time-dependent Hamiltonian simulation method and a fast gradient-estimation algorithm. We also provide a comprehensive error analysis to quantify the total error from various steps, such as the finite-dimensional representation of the control function, the discretization of the Schr\"odinger equation, the numerical quadrature, and optimization. Our quantum algorithms require fault-tolerant quantum computers.

相關內容

Scaling bottlenecks the making of digital quantum computers, posing challenges from both the quantum and the classical components. We present a classical architecture to cope with a comprehensive list of the latter challenges {\em all at once}, and implement it fully in an end-to-end system by integrating a multi-core RISC-V CPU with our in-house control electronics. Our architecture enables scalable, high-precision control of large quantum processors and accommodates evolving requirements of quantum hardware. A central feature is a microarchitecture executing quantum operations in parallel on arbitrary predefined qubit groups. Another key feature is a reconfigurable quantum instruction set that supports easy qubit re-grouping and instructions extensions. As a demonstration, we implement the widely-studied surface code quantum computing workflow, which is instructive for being demanding on both the controllers and the integrated classical computation. Our design, for the first time, reduces instruction issuing and transmission costs to constants, which do not scale with the number of qubits, without adding any overheads in decoding or dispatching. Rather than relying on specialized hardware for syndrome decoding, our system uses a dedicated multi-core CPU for both qubit control and classical computation, including syndrome decoding. This simplifies the system design and facilitates load-balancing between the quantum and classical components. We implement recent proposals as decoding firmware on a RISC-V system-on-chip (SoC) that parallelizes general inner decoders. By using our in-house Union-Find and PyMatching 2 implementations, we can achieve unprecedented decoding capabilities of up to distances 47 and 67 with the currently available SoCs, under realistic and optimistic assumptions of physical error rate $p=0.001 and p=0.0001, respectively, all in just 1 \textmu s.

We extend the deterministic-control quantum Turing machine (dcq-TM) model to incorporate mixed state inputs and outputs. Moreover, we define dcq-computable states as those that can be accurately approximated by a dcq-TM, and we introduce (conditional) Kolmogorov complexity of quantum states. We show that this notion is machine independent and that the set of dcq-computable states coincides with states having computable classical representations. Furthermore, we prove an algorithmic information version of the no-cloning theorem stating that cloning most quantum states is as difficult as creating them. Finally, we also propose a correlation-aware definition for algorithmic mutual information and shown that it satisfies symmetry of information property.

Tasks for autonomous robotic systems commonly require stabilization to a desired region while maintaining safety specifications. However, solving this multi-objective problem is challenging when the dynamics are nonlinear and high-dimensional, as traditional methods do not scale well and are often limited to specific problem structures. To address this issue, we propose a novel approach to solve the stabilize-avoid problem via the solution of an infinite-horizon constrained optimal control problem (OCP). We transform the constrained OCP into epigraph form and obtain a two-stage optimization problem that optimizes over the policy in the inner problem and over an auxiliary variable in the outer problem. We then propose a new method for this formulation that combines an on-policy deep reinforcement learning algorithm with neural network regression. Our method yields better stability during training, avoids instabilities caused by saddle-point finding, and is not restricted to specific requirements on the problem structure compared to more traditional methods. We validate our approach on different benchmark tasks, ranging from low-dimensional toy examples to an F16 fighter jet with a 17-dimensional state space. Simulation results show that our approach consistently yields controllers that match or exceed the safety of existing methods while providing ten-fold increases in stability performance from larger regions of attraction.

The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function. We introduce a framework for proving approximate degree lower bounds for certain oracle identification problems, where the goal is to recover a hidden binary string $x \in \{0, 1\}^n$ given possibly non-standard oracle access to it. Our lower bounds apply to decision versions of these problems, where the goal is to compute the parity of $x$. We apply our framework to the ordered search and hidden string problems, proving nearly tight approximate degree lower bounds of $\Omega(n/\log^2 n)$ for each. These lower bounds generalize to the weakly unbounded error setting, giving a new quantum query lower bound for the hidden string problem in this regime. Our lower bounds are driven by randomized communication upper bounds for the greater-than and equality functions.

Logic synthesis is the first and most vital step in chip design. This steps converts a chip specification written in a hardware description language (such as Verilog) into an optimized implementation using Boolean logic gates. State-of-the-art logic synthesis algorithms have a large number of logic minimization heuristics, typically applied sequentially based on human experience and intuition. The choice of the order greatly impacts the quality (e.g., area and delay) of the synthesized circuit. In this paper, we propose INVICTUS, a model-based offline reinforcement learning (RL) solution that automatically generates a sequence of logic minimization heuristics ("synthesis recipe") based on a training dataset of previously seen designs. A key challenge is that new designs can range from being very similar to past designs (e.g., adders and multipliers) to being completely novel (e.g., new processor instructions). %Compared to prior work, INVICTUS is the first solution that uses a mix of RL and search methods joint with an online out-of-distribution detector to generate synthesis recipes over a wide range of benchmarks. Our results demonstrate significant improvement in area-delay product (ADP) of synthesized circuits with up to 30\% improvement over state-of-the-art techniques. Moreover, INVICTUS achieves up to $6.3\times$ runtime reduction (iso-ADP) compared to the state-of-the-art.

We are interested in the nonparametric estimation of the probability density of price returns, using the kernel approach. The output of the method heavily relies on the selection of a bandwidth parameter. Many selection methods have been proposed in the statistical literature. We put forward an alternative selection method based on a criterion coming from information theory and from the physics of complex systems: the bandwidth to be selected maximizes a new measure of complexity, with the aim of avoiding both overfitting and underfitting. We review existing methods of bandwidth selection and show that they lead to contradictory conclusions regarding the complexity of the probability distribution of price returns. This has also some striking consequences in the evaluation of the relevance of the efficient market hypothesis. We apply these methods to real financial data, focusing on the Bitcoin.

Enabling quantum switches (QSs) to serve requests submitted by quantum end nodes in quantum communication networks (QCNs) is a challenging problem due to the heterogeneous fidelity requirements of the submitted requests and the limited resources of the QCN. Effectively determining which requests are served by a given QS is fundamental to foster developments in practical QCN applications, like quantum data centers. However, the state-of-the-art on QS operation has overlooked this association problem, and it mainly focused on QCNs with a single QS. In this paper, the request-QS association problem in QCNs is formulated as a matching game that captures the limited QCN resources, heterogeneous application-specific fidelity requirements, and scheduling of the different QS operations. To solve this game, a swap-stable request-QS association (RQSA) algorithm is proposed while considering partial QCN information availability. Extensive simulations are conducted to validate the effectiveness of the proposed RQSA algorithm. Simulation results show that the proposed RQSA algorithm achieves a near-optimal (within 5%) performance in terms of the percentage of served requests and overall achieved fidelity, while outperforming benchmark greedy solutions by over 13%. Moreover, the proposed RQSA algorithm is shown to be scalable and maintain its near-optimal performance even when the size of the QCN increases.

Training a robust policy is critical for policy deployment in real-world systems or dealing with unknown dynamics mismatch in different dynamic systems. Domain Randomization~(DR) is a simple and elegant approach that trains a conservative policy to counter different dynamic systems without expert knowledge about the target system parameters. However, existing works reveal that the policy trained through DR tends to be over-conservative and performs poorly in target domains. Our key insight is that dynamic systems with different parameters provide different levels of difficulty for the policy, and the difficulty of behaving well in a system is constantly changing due to the evolution of the policy. If we can actively sample the systems with proper difficulty for the policy on the fly, it will stabilize the training process and prevent the policy from becoming over-conservative or over-optimistic. To operationalize this idea, we introduce Active Dynamics Preference~(ADP), which quantifies the informativeness and density of sampled system parameters. ADP actively selects system parameters with high informativeness and low density. We validate our approach in four robotic locomotion tasks with various discrepancies between the training and testing environments. Extensive results demonstrate that our approach has superior robustness for system inconsistency compared to several baselines.

We consider the problems of testing and learning quantum $k$-junta channels, which are $n$-qubit to $n$-qubit quantum channels acting non-trivially on at most $k$ out of $n$ qubits and leaving the rest of qubits unchanged. We show the following. 1. An $\widetilde{O}\left(\sqrt{k}\right)$-query algorithm to distinguish whether the given channel is $k$-junta channel or is far from any $k$-junta channels, and a lower bound $\Omega\left(\sqrt{k}\right)$ on the number of queries; 2. An $\widetilde{O}\left(4^k\right)$-query algorithm to learn a $k$-junta channel, and a lower bound $\Omega\left(4^k/k\right)$ on the number of queries. This answers an open problem raised by Chen et al. (2023). In order to settle these problems, we develop a Fourier analysis framework over the space of superoperators and prove several fundamental properties, which extends the Fourier analysis over the space of operators introduced in Montanaro and Osborne (2010).

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司