亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Enabling quantum switches (QSs) to serve requests submitted by quantum end nodes in quantum communication networks (QCNs) is a challenging problem due to the heterogeneous fidelity requirements of the submitted requests and the limited resources of the QCN. Effectively determining which requests are served by a given QS is fundamental to foster developments in practical QCN applications, like quantum data centers. However, the state-of-the-art on QS operation has overlooked this association problem, and it mainly focused on QCNs with a single QS. In this paper, the request-QS association problem in QCNs is formulated as a matching game that captures the limited QCN resources, heterogeneous application-specific fidelity requirements, and scheduling of the different QS operations. To solve this game, a swap-stable request-QS association (RQSA) algorithm is proposed while considering partial QCN information availability. Extensive simulations are conducted to validate the effectiveness of the proposed RQSA algorithm. Simulation results show that the proposed RQSA algorithm achieves a near-optimal (within 5%) performance in terms of the percentage of served requests and overall achieved fidelity, while outperforming benchmark greedy solutions by over 13%. Moreover, the proposed RQSA algorithm is shown to be scalable and maintain its near-optimal performance even when the size of the QCN increases.

相關內容

Vertical federated learning (VFL) is a promising approach for collaboratively training machine learning models using private data partitioned vertically across different parties. Ideally in a VFL setting, the active party (party possessing features of samples with labels) benefits by improving its machine learning model through collaboration with some passive parties (parties possessing additional features of the same samples without labels) in a privacy preserving manner. However, motivating passive parties to participate in VFL can be challenging. In this paper, we focus on the problem of allocating incentives to the passive parties by the active party based on their contributions to the VFL process. We formulate this problem as a variant of the Nucleolus game theory concept, known as the Bankruptcy Problem, and solve it using the Talmud's division rule. We evaluate our proposed method on synthetic and real-world datasets and show that it ensures fairness and stability in incentive allocation among passive parties who contribute their data to the federated model. Additionally, we compare our method to the existing solution of calculating Shapley values and show that our approach provides a more efficient solution with fewer computations.

Order execution is a fundamental task in quantitative finance, aiming at finishing acquisition or liquidation for a number of trading orders of the specific assets. Recent advance in model-free reinforcement learning (RL) provides a data-driven solution to the order execution problem. However, the existing works always optimize execution for an individual order, overlooking the practice that multiple orders are specified to execute simultaneously, resulting in suboptimality and bias. In this paper, we first present a multi-agent RL (MARL) method for multi-order execution considering practical constraints. Specifically, we treat every agent as an individual operator to trade one specific order, while keeping communicating with each other and collaborating for maximizing the overall profits. Nevertheless, the existing MARL algorithms often incorporate communication among agents by exchanging only the information of their partial observations, which is inefficient in complicated financial market. To improve collaboration, we then propose a learnable multi-round communication protocol, for the agents communicating the intended actions with each other and refining accordingly. It is optimized through a novel action value attribution method which is provably consistent with the original learning objective yet more efficient. The experiments on the data from two real-world markets have illustrated superior performance with significantly better collaboration effectiveness achieved by our method.

Mixed-precision quantization, where a deep neural network's layers are quantized to different precisions, offers the opportunity to optimize the trade-offs between model size, latency, and statistical accuracy beyond what can be achieved with homogeneous-bit-width quantization. To navigate the intractable search space of mixed-precision configurations for a given network, this paper proposes a hybrid search methodology. It consists of a hardware-agnostic differentiable search algorithm followed by a hardware-aware heuristic optimization to find mixed-precision configurations latency-optimized for a specific hardware target. We evaluate our algorithm on MobileNetV1 and MobileNetV2 and deploy the resulting networks on a family of multi-core RISC-V microcontroller platforms with different hardware characteristics. We achieve up to 28.6% reduction of end-to-end latency compared to an 8-bit model at a negligible accuracy drop from a full-precision baseline on the 1000-class ImageNet dataset. We demonstrate speedups relative to an 8-bit baseline, even on systems with no hardware support for sub-byte arithmetic at negligible accuracy drop. Furthermore, we show the superiority of our approach with respect to differentiable search targeting reduced binary operation counts as a proxy for latency.

Transition amplitudes and transition probabilities are relevant to many areas of physics simulation, including the calculation of response properties and correlation functions. These quantities can also be related to solving linear systems of equations. Here we present three related algorithms for calculating transition probabilities. First, we extend a previously published short-depth algorithm, allowing for the two input states to be non-orthogonal. Building on this first procedure, we then derive a higher-depth algorithm based on Trotterization and Richardson extrapolation that requires fewer circuit evaluations. Third, we introduce a tunable algorithm that allows for trading off circuit depth and measurement complexity, yielding an algorithm that can be tailored to specific hardware characteristics. Finally, we implement proof-of-principle numerics for models in physics and chemistry and for a subroutine in variational quantum linear solving (VQLS). The primary benefits of our approaches are that (a) arbitrary non-orthogonal states may now be used with small increases in quantum resources, (b) we (like another recently proposed method) entirely avoid subroutines such as the Hadamard test that may require three-qubit gates to be decomposed, and (c) in some cases fewer quantum circuit evaluations are required as compared to the previous state-of-the-art in NISQ algorithms for transition probabilities.

Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks ranging from delivery to smart city surveillance. Reaping these benefits requires CAVs to autonomously navigate to target destinations. To this end, each CAV's navigation controller must leverage the information collected by sensors and wireless systems for decision-making on longitudinal and lateral movements. However, enabling autonomous navigation for CAVs requires a convergent integration of communication, control, and learning systems. The goal of this article is to explicitly expose the challenges related to this convergence and propose solutions to address them in two major use cases: Uncoordinated and coordinated CAVs. In particular, challenges related to the navigation of uncoordinated CAVs include stable path tracking, robust control against cyber-physical attacks, and adaptive navigation controller design. Meanwhile, when multiple CAVs coordinate their movements during navigation, fundamental problems such as stable formation, fast collaborative learning, and distributed intrusion detection are analyzed. For both cases, solutions using the convergence of communication theory, control theory, and machine learning are proposed to enable effective and secure CAV navigation. Preliminary simulation results are provided to show the merits of proposed solutions.

Ranking and Balance are arguably the two most important algorithms in the online matching literature. They achieve the same optimal competitive ratio of $1-1/e$ for the integral version and fractional version of online bipartite matching by Karp, Vazirani, and Vazirani (STOC 1990) respectively. The two algorithms have been generalized to weighted online bipartite matching problems, including vertex-weighted online bipartite matching and AdWords, by utilizing a perturbation function. The canonical choice of the perturbation function is $f(x)=1-e^{x-1}$ as it leads to the optimal competitive ratio of $1-1/e$ in both settings. We advance the understanding of the weighted generalizations of Ranking and Balance in this paper, with a focus on studying the effect of different perturbation functions. First, we prove that the canonical perturbation function is the \emph{unique} optimal perturbation function for vertex-weighted online bipartite matching. In stark contrast, all perturbation functions achieve the optimal competitive ratio of $1-1/e$ in the unweighted setting. Second, we prove that the generalization of Ranking to AdWords with unknown budgets using the canonical perturbation function is at most $0.624$ competitive, refuting a conjecture of Vazirani (2021). More generally, as an application of the first result, we prove that no perturbation function leads to the prominent competitive ratio of $1-1/e$ by establishing an upper bound of $1-1/e-0.0003$. Finally, we propose the online budget-additive welfare maximization problem that is intermediate between AdWords and AdWords with unknown budgets, and we design an optimal $1-1/e$ competitive algorithm by generalizing Balance.

Federated Learning (FL) has emerged as a decentralized technique, where contrary to traditional centralized approaches, devices perform a model training in a collaborative manner, while preserving data privacy. Despite the existing efforts made in FL, its environmental impact is still under investigation, since several critical challenges regarding its applicability to wireless networks have been identified. Towards mitigating the carbon footprint of FL, the current work proposes a Genetic Algorithm (GA) approach, targeting the minimization of both the overall energy consumption of an FL process and any unnecessary resource utilization, by orchestrating the computational and communication resources of the involved devices, while guaranteeing a certain FL model performance target. A penalty function is introduced in the offline phase of the GA that penalizes the strategies that violate the constraints of the environment, ensuring a safe GA process. Evaluation results show the effectiveness of the proposed scheme compared to two state-of-the-art baseline solutions, achieving a decrease of up to 83% in the total energy consumption.

Recently, stochastic geometry has been applied to provide tractable performance analysis for low earth orbit (LEO) satellite networks. However, existing works mainly focus on analyzing the ``coverage probability'', which provides limited information. To provide more insights, this paper provides a more fine grained analysis on LEO satellite networks modeled by a homogeneous Poisson point process (HPPP). Specifically, the distribution and moments of the conditional coverage probability given the point process are studied. The developed analytical results can provide characterizations on LEO satellite networks, which are not available in existing literature, such as ``user fairness'' and ``what fraction of users can achieve a given transmission reliability ''. Simulation results are provided to verify the developed analysis. Numerical results show that, in a dense satellite network, {\color{black}it is} beneficial to deploy satellites at low altitude, for the sake of both coverage probability and user fairness.

Entangled states shared among distant nodes are frequently used in quantum network applications. When quantum resources are abundant, entangled states can be continuously distributed across the network, allowing nodes to consume them whenever necessary. This continuous distribution of entanglement enables quantum network applications to operate continuously while being regularly supplied with entangled states. Here, we focus on the steady-state performance analysis of protocols for continuous distribution of entanglement. We propose the virtual neighborhood size and the virtual node degree as performance metrics. We utilize the concept of Pareto optimality to formulate a multi-objective optimization problem to maximize the performance. As an example, we solve the problem for a quantum network with a tree topology. One of the main conclusions from our analysis is that the entanglement consumption rate has a greater impact on the protocol performance than the fidelity requirements. The metrics that we establish in this manuscript can be utilized to assess the feasibility of entanglement distribution protocols for large-scale quantum networks.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

北京阿比特科技有限公司