亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Transition amplitudes and transition probabilities are relevant to many areas of physics simulation, including the calculation of response properties and correlation functions. These quantities can also be related to solving linear systems of equations. Here we present three related algorithms for calculating transition probabilities. First, we extend a previously published short-depth algorithm, allowing for the two input states to be non-orthogonal. Building on this first procedure, we then derive a higher-depth algorithm based on Trotterization and Richardson extrapolation that requires fewer circuit evaluations. Third, we introduce a tunable algorithm that allows for trading off circuit depth and measurement complexity, yielding an algorithm that can be tailored to specific hardware characteristics. Finally, we implement proof-of-principle numerics for models in physics and chemistry and for a subroutine in variational quantum linear solving (VQLS). The primary benefits of our approaches are that (a) arbitrary non-orthogonal states may now be used with small increases in quantum resources, (b) we (like another recently proposed method) entirely avoid subroutines such as the Hadamard test that may require three-qubit gates to be decomposed, and (c) in some cases fewer quantum circuit evaluations are required as compared to the previous state-of-the-art in NISQ algorithms for transition probabilities.

相關內容

We establish optimal error bounds on time-splitting methods for the nonlinear Schr\"odinger equation with low regularity potential and typical power-type nonlinearity $ f(\rho) = \rho^\sigma $, where $ \rho:=|\psi|^2 $ is the density with $ \psi $ the wave function and $ \sigma > 0 $ the exponent of the nonlinearity. For the first-order Lie-Trotter time-splitting method, optimal $ L^2 $-norm error bound is proved for $L^\infty$-potential and $ \sigma > 0 $, and optimal $H^1$-norm error bound is obtained for $ W^{1, 4} $-potential and $ \sigma \geq 1/2 $. For the second-order Strang time-splitting method, optimal $ L^2 $-norm error bound is established for $H^2$-potential and $ \sigma \geq 1 $, and optimal $H^1$-norm error bound is proved for $H^3$-potential and $ \sigma \geq 3/2 $. Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called \textit{regularity compensation oscillation} (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.

Introduction: Oblique Target-rotation in the context of exploratory factor analysis is a relevant method for the investigation of the oblique independent clusters model. It was argued that minimizing single cross-loadings by means of target rotation may lead to large effects of sampling error on the target rotated factor solutions. Method: In order to minimize effects of sampling error on results of Target-rotation we propose to compute the mean cross-loadings for each block of salient loadings of the independent clusters model and to perform target rotation for the block-wise mean cross-loadings. The resulting transformation-matrix is than applied to the complete unrotated loading matrix in order to produce mean Target-rotated factors. Results: A simulation study based on correlated independent factor models revealed that mean oblique Target-rotation resulted in smaller negative bias of factor inter-correlations than conventional Target-rotation based on single loadings, especially when sample size was small and when the number of factors was large. An empirical example revealed that the similarity of Target-rotated factors computed for small subsamples with Target-rotated factors of the total sample was more pronounced for mean Target-rotation than for conventional Target-rotation. Discussion: Mean Target-rotation can be recommended in the context of oblique independent factor models, especially for small samples. An R-script and an SPSS-script for this form of Target-rotation are provided in the Appendix.

Combining sum factorization, weighted quadrature, and row-based assembly enables efficient higher-order computations for tensor product splines. We aim to transfer these concepts to immersed boundary methods, which perform simulations on a regular background mesh cut by a boundary representation that defines the domain of interest. Therefore, we present a novel concept to divide the support of cut basis functions to obtain regular parts suited for sum factorization. These regions require special discontinuous weighted quadrature rules, while Gauss-like quadrature rules integrate the remaining support. Two linear elasticity benchmark problems confirm the derived estimate for the computational costs of the different integration routines and their combination. Although the presence of cut elements reduces the speed-up, its contribution to the overall computation time declines with h-refinement.

In epidemiology and social sciences, propensity score methods are popular for estimating treatment effects using observational data, and multiple imputation is popular for handling covariate missingness. However, how to appropriately use multiple imputation for propensity score analysis is not completely clear. This paper aims to bring clarity on the consistency (or lack thereof) of methods that have been proposed, focusing on the within approach (where the effect is estimated separately in each imputed dataset and then the multiple estimates are combined) and the across approach (where typically propensity scores are averaged across imputed datasets before being used for effect estimation). We show that the within method is valid and can be used with any causal effect estimator that is consistent in the full-data setting. Existing across methods are inconsistent, but a different across method that averages the inverse probability weights across imputed datasets is consistent for propensity score weighting. We also comment on methods that rely on imputing a function of the missing covariate rather than the covariate itself, including imputation of the propensity score and of the probability weight. Based on consistency results and practical flexibility, we recommend generally using the standard within method. Throughout, we provide intuition to make the results meaningful to the broad audience of applied researchers.

We introduce a formulation of optimal transport problem for distributions on function spaces, where the stochastic map between functional domains can be partially represented in terms of an (infinite-dimensional) Hilbert-Schmidt operator mapping a Hilbert space of functions to another. For numerous machine learning tasks, data can be naturally viewed as samples drawn from spaces of functions, such as curves and surfaces, in high dimensions. Optimal transport for functional data analysis provides a useful framework of treatment for such domains. { Since probability measures in infinite dimensional spaces generally lack absolute continuity (that is, with respect to non-degenerate Gaussian measures), the Monge map in the standard optimal transport theory for finite dimensional spaces may not exist. Our approach to the optimal transport problem in infinite dimensions is by a suitable regularization technique -- we restrict the class of transport maps to be a Hilbert-Schmidt space of operators.} To this end, we develop an efficient algorithm for finding the stochastic transport map between functional domains and provide theoretical guarantees on the existence, uniqueness, and consistency of our estimate for the Hilbert-Schmidt operator. We validate our method on synthetic datasets and examine the functional properties of the transport map. Experiments on real-world datasets of robot arm trajectories further demonstrate the effectiveness of our method on applications in domain adaptation.

We study the continuous multi-reference alignment model of estimating a periodic function on the circle from noisy and circularly-rotated observations. Motivated by analogous high-dimensional problems that arise in cryo-electron microscopy, we establish minimax rates for estimating generic signals that are explicit in the dimension $K$. In a high-noise regime with noise variance $\sigma^2 \gtrsim K$, for signals with Fourier coefficients of roughly uniform magnitude, the rate scales as $\sigma^6$ and has no further dependence on the dimension. This rate is achieved by a bispectrum inversion procedure, and our analyses provide new stability bounds for bispectrum inversion that may be of independent interest. In a low-noise regime where $\sigma^2 \lesssim K/\log K$, the rate scales instead as $K\sigma^2$, and we establish this rate by a sharp analysis of the maximum likelihood estimator that marginalizes over latent rotations. A complementary lower bound that interpolates between these two regimes is obtained using Assouad's hypercube lemma. We extend these analyses also to signals whose Fourier coefficients have a slow power law decay.

A Milstein-type method is proposed for some highly non-linear non-autonomous time-changed stochastic differential equations (SDEs). The spatial variables in the coefficients of the time-changed SDEs satisfy the super-linear growth condition and the temporal variables obey some H\"older's continuity condition. The strong convergence in the finite time is studied and the convergence order is obtained.

The Koopman operator provides a linear perspective on non-linear dynamics by focusing on the evolution of observables in an invariant subspace. Observables of interest are typically linearly reconstructed from the Koopman eigenfunctions. Despite the broad use of Koopman operators over the past few years, there exist some misconceptions about the applicability of Koopman operators to dynamical systems with more than one fixed point. In this work, an explanation is provided for the mechanism of lifting for the Koopman operator of nonlinear systems with multiple attractors. Considering the example of the Duffing oscillator, we show that by exploiting the inherent symmetry between the basins of attraction, a linear reconstruction with three degrees of freedom in the Koopman observable space is sufficient to globally linearize the system.

We discuss a system of stochastic differential equations with a stiff linear term and additive noise driven by fractional Brownian motions (fBms) with Hurst parameter H>1/2, which arise e. g., from spatial approximations of stochastic partial differential equations. For their numerical approximation, we present an exponential Euler scheme and show that it converges in the strong sense with an exact rate close to the Hurst parameter H. Further, based on [2], we conclude the existence of a unique stationary solution of the exponential Euler scheme that is pathwise asymptotically stable.

Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex constrained optimization that sequentially minimizes majorizing surrogates of the objective function in each block coordinate while the other coordinates are held fixed. BMM entails a large class of optimization algorithms such as block coordinate descent and its proximal-point variant, expectation-minimization, and block projected gradient descent. We establish that for general constrained nonconvex optimization, BMM with strongly convex surrogates can produce an $\epsilon$-stationary point within $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$ iterations and asymptotically converges to the set of stationary points. Furthermore, we propose a trust-region variant of BMM that can handle surrogates that are only convex and still obtain the same iteration complexity and asymptotic stationarity. These results hold robustly even when the convex sub-problems are inexactly solved as long as the optimality gaps are summable. As an application, we show that a regularized version of the celebrated multiplicative update algorithm for nonnegative matrix factorization by Lee and Seung has iteration complexity of $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$. The same result holds for a wide class of regularized nonnegative tensor decomposition algorithms as well as the classical block projected gradient descent algorithm. These theoretical results are validated through various numerical experiments.

北京阿比特科技有限公司