亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a formulation of optimal transport problem for distributions on function spaces, where the stochastic map between functional domains can be partially represented in terms of an (infinite-dimensional) Hilbert-Schmidt operator mapping a Hilbert space of functions to another. For numerous machine learning tasks, data can be naturally viewed as samples drawn from spaces of functions, such as curves and surfaces, in high dimensions. Optimal transport for functional data analysis provides a useful framework of treatment for such domains. { Since probability measures in infinite dimensional spaces generally lack absolute continuity (that is, with respect to non-degenerate Gaussian measures), the Monge map in the standard optimal transport theory for finite dimensional spaces may not exist. Our approach to the optimal transport problem in infinite dimensions is by a suitable regularization technique -- we restrict the class of transport maps to be a Hilbert-Schmidt space of operators.} To this end, we develop an efficient algorithm for finding the stochastic transport map between functional domains and provide theoretical guarantees on the existence, uniqueness, and consistency of our estimate for the Hilbert-Schmidt operator. We validate our method on synthetic datasets and examine the functional properties of the transport map. Experiments on real-world datasets of robot arm trajectories further demonstrate the effectiveness of our method on applications in domain adaptation.

相關內容

Probability density function estimation with weighted samples is the main foundation of all adaptive importance sampling algorithms. Classically, a target distribution is approximated either by a non-parametric model or within a parametric family. However, these models suffer from the curse of dimensionality or from their lack of flexibility. In this contribution, we suggest to use as the approximating model a distribution parameterised by a variational autoencoder. We extend the existing framework to the case of weighted samples by introducing a new objective function. The flexibility of the obtained family of distributions makes it as expressive as a non-parametric model, and despite the very high number of parameters to estimate, this family is much more efficient in high dimension than the classical Gaussian or Gaussian mixture families. Moreover, in order to add flexibility to the model and to be able to learn multimodal distributions, we consider a learnable prior distribution for the variational autoencoder latent variables. We also introduce a new pre-training procedure for the variational autoencoder to find good starting weights of the neural networks to prevent as much as possible the posterior collapse phenomenon to happen. At last, we explicit how the resulting distribution can be combined with importance sampling, and we exploit the proposed procedure in existing adaptive importance sampling algorithms to draw points from a target distribution and to estimate a rare event probability in high dimension on two multimodal problems.

We present an algorithm for computing melting points by autonomously learning from coexistence simulations in the NPT ensemble. Given the interatomic interaction model, the method makes decisions regarding the number of atoms and temperature at which to conduct simulations, and based on the collected data predicts the melting point along with the uncertainty, which can be systematically improved with more data. We demonstrate how incorporating physical models of the solid-liquid coexistence evolution enhances the algorithm's accuracy and enables optimal decision-making to effectively reduce predictive uncertainty. To validate our approach, we compare the results of 20 melting point calculations from the literature to the results of our calculations, all conducted with same interatomic potentials. Remarkably, we observe significant deviations in about one-third of the cases, underscoring the need for accurate and reliable algorithms for materials property calculations.

We introduce the extremal range, a local statistic for studying the spatial extent of extreme events in random fields on $\mathbb{R}^2$. Conditioned on exceedance of a high threshold at a location $s$, the extremal range at $s$ is the random variable defined as the smallest distance from $s$ to a location where there is a non-exceedance. We leverage tools from excursion-set theory to study distributional properties of the extremal range, propose parametric models and predict the median extremal range at extreme threshold levels. The extremal range captures the rate at which the spatial extent of conditional extreme events scales for increasingly high thresholds, and we relate its distributional properties with the bivariate tail dependence coefficient and the extremal index of time series in classical Extreme-Value Theory. Consistent estimation of the distribution function of the extremal range for stationary random fields is proven. For non-stationary random fields, we implement generalized additive median regression to predict extremal-range maps at very high threshold levels. An application to two large daily temperature datasets, namely reanalyses and climate-model simulations for France, highlights decreasing extremal dependence for increasing threshold levels and reveals strong differences in joint tail decay rates between reanalyses and simulations.

Approximation of high-dimensional functions is a problem in many scientific fields that is only feasible if advantageous structural properties, such as sparsity in a given basis, can be exploited. A relevant tool for analysing sparse approximations is Stechkin's lemma. In its standard form, however, this lemma does not allow to explain convergence rates for a wide range of relevant function classes. This work presents a new weighted version of Stechkin's lemma that improves the best $n$-term rates for weighted $\ell^p$-spaces and associated function classes such as Sobolev or Besov spaces. For the class of holomorphic functions, which occur as solutions of common high-dimensional parameter-dependent PDEs, we recover exponential rates that are not directly obtainable with Stechkin's lemma. Since weighted $\ell^p$-summability induces weighted sparsity, compressed sensing algorithms can be used to approximate the associated functions. To break the curse of dimensionality, which these algorithms suffer, we recall that sparse approximations can be encoded efficiently using tensor networks with sparse component tensors. We also demonstrate that weighted $\ell^p$-summability induces low ranks, which motivates a second tensor train format with low ranks and a single weighted sparse core. We present new alternating algorithms for best $n$-term approximation in both formats. To analyse the sample complexity for the new model classes, we derive a novel result of independent interest that allows the transfer of the restricted isometry property from one set to another sufficiently close set. Although they lead up to the analysis of our final model class, our contributions on weighted Stechkin and the restricted isometry property are of independent interest and can be read independently.

Physics informed neural network (PINN) based solution methods for differential equations have recently shown success in a variety of scientific computing applications. Several authors have reported difficulties, however, when using PINNs to solve equations with multiscale features. The objective of the present work is to illustrate and explain the difficulty of using standard PINNs for the particular case of divergence-form elliptic partial differential equations (PDEs) with oscillatory coefficients present in the differential operator. We show that if the coefficient in the elliptic operator $a^{\epsilon}(x)$ is of the form $a(x/\epsilon)$ for a 1-periodic coercive function $a(\cdot)$, then the Frobenius norm of the neural tangent kernel (NTK) matrix associated to the loss function grows as $1/\epsilon^2$. This implies that as the separation of scales in the problem increases, training the neural network with gradient descent based methods to achieve an accurate approximation of the solution to the PDE becomes increasingly difficult. Numerical examples illustrate the stiffness of the optimization problem.

Motivated by the computational difficulties incurred by popular deep learning algorithms for the generative modeling of temporal densities, we propose a cheap alternative which requires minimal hyperparameter tuning and scales favorably to high dimensional problems. In particular, we use a projection-based optimal transport solver [Meng et al., 2019] to join successive samples and subsequently use transport splines [Chewi et al., 2020] to interpolate the evolving density. When the sampling frequency is sufficiently high, the optimal maps are close to the identity and are thus computationally efficient to compute. Moreover, the training process is highly parallelizable as all optimal maps are independent and can thus be learned simultaneously. Finally, the approach is based solely on numerical linear algebra rather than minimizing a nonconvex objective function, allowing us to easily analyze and control the algorithm. We present several numerical experiments on both synthetic and real-world datasets to demonstrate the efficiency of our method. In particular, these experiments show that the proposed approach is highly competitive compared with state-of-the-art normalizing flows conditioned on time across a wide range of dimensionalities.

Spectral deferred corrections (SDC) are a class of iterative methods for the numerical solution of ordinary differential equations. SDC can be interpreted as a Picard iteration to solve a fully implicit collocation problem, preconditioned with a low-order method. It has been widely studied for first-order problems, using explicit, implicit or implicit-explicit Euler and other low-order methods as preconditioner. For first-order problems, SDC achieves arbitrary order of accuracy and possesses good stability properties. While numerical results for SDC applied to the second-order Lorentz equations exist, no theoretical results are available for SDC applied to second-order problems. We present an analysis of the convergence and stability properties of SDC using velocity-Verlet as the base method for general second-order initial value problems. Our analysis proves that the order of convergence depends on whether the force in the system depends on the velocity. We also demonstrate that the SDC iteration is stable under certain conditions. Finally, we show that SDC can be computationally more efficient than a simple Picard iteration or a fourth-order Runge-Kutta-Nystr\"om method.

We study the problem of adaptive variable selection in a Gaussian white noise model of intensity $\varepsilon$ under certain sparsity and regularity conditions on an unknown regression function $f$. The $d$-variate regression function $f$ is assumed to be a sum of functions each depending on a smaller number $k$ of variables ($1 \leq k \leq d$). These functions are unknown to us and only few of them are non-zero. We assume that $d=d_\varepsilon \to \infty$ as $\varepsilon \to 0$ and consider the cases when $k$ is fixed and when $k=k_\varepsilon \to \infty$ and $k=o(d)$ as $\varepsilon \to 0$. In this work, we introduce an adaptive selection procedure that, under some model assumptions, identifies exactly all non-zero $k$-variate components of $f$. In addition, we establish conditions under which exact identification of the non-zero components is impossible. These conditions ensure that the proposed selection procedure is the best possible in the asymptotically minimax sense with respect to the Hamming risk.

Suitable discretizations through tensor product formulas of popular multidimensional operators (diffusion--advection, for instance) lead to matrices with $d$-dimensional Kronecker sum structure. For evolutionary PDEs containing such operators and integrated in time with exponential integrators, it is of paramount importance to efficiently approximate actions of $\varphi$-functions of this kind of matrices. In this work, we show how to produce directional split approximations of third order with respect to the time step size. They conveniently employ tensor-matrix products (realized with highly performance level 3 BLAS) and that allow for the effective usage in practice of exponential integrators up to order three. The approach has been successfully tested against state-of-the-art techniques on two well-known physical models, namely FitzHugh--Nagumo and Schnakenberg.

We consider several basic questions on distributed routing in directed graphs with multiple additive costs, or metrics, and multiple constraints. Distributed routing in this sense is used in several protocols, such as IS-IS and OSPF. A practical approach to the multi-constraint routing problem is to, first, combine the metrics into a single `composite' metric, and then apply one-to-all shortest path algorithms, e.g. Dijkstra, in order to find shortest path trees. We show that, in general, even if a feasible path exists and is known for every source and destination pair, it is impossible to guarantee a distributed routing under several constraints. We also study the question of choosing the optimal `composite' metric. We show that under certain mathematical assumptions we can efficiently find a convex combination of several metrics that maximizes the number of discovered feasible paths. Sometimes it can be done analytically, and is in general possible using what we call a 'smart iterative approach'. We illustrate these findings by extensive experiments on several typical network topologies.

北京阿比特科技有限公司